Skip to main content

AutoML for image augmentation

Project description

AutoAlbument

AutoAlbument is an AutoML tool that learns image augmentation policies from data using the Faster AutoAugment algorithm. It relieves the user from the burden of manually selecting augmentations and tuning their parameters. AutoAlbument provides a complete ready-to-use configuration for an augmentation pipeline.

The library supports image classification and semantic segmentation tasks. You can use Albumentations to utilize policies discovered by AutoAlbument in your computer vision pipelines.

The documentation is available at https://albumentations.ai/docs/autoalbument/

Benchmarks

Here is a comparison between a baseline augmentation strategy and an augmentation policy discovered by AutoAlbument for different classification and semantic segmentation tasks. You can read more about these benchmarks in the autoalbument-benchmarks repository.

Classification

Dataset Baseline Top-1 Accuracy AutoAlbument Top-1 Accuracy
CIFAR10 91.79 96.02
SVHN 98.31 98.48
ImageNet 73.27 75.17

Semantic segmentation

Dataset Baseline mIOU AutoAlbument mIOU
Pascal VOC 73.34 75.55
Cityscapes 79.47 79.92

Installation

AutoAlbument requires Python 3.6 or higher. To install the latest stable version from PyPI:

pip install -U autoalbument

How to use AutoAlbument

How to use AutoAlbument

  1. You need to create a configuration file with AutoAlbument parameters and a Python file that implements a custom PyTorch Dataset for your data. Next, you need to pass those files to AutoAlbument.
  2. AutoAlbument will use Generative Adversarial Network to discover augmentation policies and then create a file containing those policies.
  3. Finally, you can use Albumentations to load augmentation policies from the file and utilize them in your computer vision pipelines.

You can read the detailed description of all steps at https://albumentations.ai/docs/autoalbument/how_to_use/

Examples

The examples directory contains example configs for different tasks and datasets:

Classification

Semantic segmentation

To run the search with an example config:

autoalbument-search --config-dir </path/to/directory_with_dataset.py_and_search.yaml>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoalbument-0.4.0.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

autoalbument-0.4.0-py3-none-any.whl (37.5 kB view details)

Uploaded Python 3

File details

Details for the file autoalbument-0.4.0.tar.gz.

File metadata

  • Download URL: autoalbument-0.4.0.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.7

File hashes

Hashes for autoalbument-0.4.0.tar.gz
Algorithm Hash digest
SHA256 75b53492d5cfffd1b0446458d63fe9fbb81d942492ccc198dc2719b34c7c2f80
MD5 ccc08a809cf93a1d8235397d76ac599d
BLAKE2b-256 604359c4e651e48fcbfda22fbaceda42764e3f649e676f39146819918948e019

See more details on using hashes here.

File details

Details for the file autoalbument-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: autoalbument-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 37.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.7

File hashes

Hashes for autoalbument-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e39a971ced1ea9478454d8fa5a814e9de006685995b6a6b219dae3d48447c7c7
MD5 c4e644efe453f44df2735fdd117ec82f
BLAKE2b-256 b02029018e99388de707cce50019caf30a1060a4365622decaf7d16a89c1ab62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page