a modeling tool that automatically builds scorecards and tree models.
Project description
##自动构建评分卡
## 思想碰撞
> 仓库地址:https://github.com/ZhengRyan/autobmt > > 微信公众号文章:https://mp.weixin.qq.com/s/u8Nsp5M93WIGL2M0tU4U_g > > pipy包:https://pypi.org/project/autobmt/ > > 实验数据:链接: https://pan.baidu.com/s/1BRIHH9Wcwy2EZaO5xSgH9w?pwd=tdq5 提取码: tdq5
## 一、环境准备 可以不用单独创建虚拟环境,都是日常常用的python依赖包。需要创建虚拟环境,请参考”五、依赖包安装”
### autobmt 安装 pip install(pip安装)
`bash pip install autobmt # to install pip install -U autobmt # to upgrade `
Source code install(源码安装)
`bash python setup.py install `
## 二、使用教程 1、1行代码自动构建评分卡:请查看autobmt/examples/autobmt_lr_tutorial_code.py。里面有例子
2、1步1步拆解自动构建评分卡的步骤:请查看autobmt/examples/tutorial_code.ipynb。里面有详细步骤拆解例子
## 三、训练、自动选变量、自动单调最优分箱、自动构建模型、自动构建评分卡 1、Step 1: EDA,整体数据探索性数据分析
2、Step 2: 特征粗筛选
3、Step 3: 对粗筛选后的变量调用最优分箱
4、Step 4: 对最优分箱后的变量进行woe转换
5、Step 5: 对woe转换后的变量进行stepwise
6、Step 6: 用逻辑回归构建模型
7、Step 7: 构建评分卡
8、Step 8: 持久化模型,分箱点,woe值,评分卡结构
9、Step 9: 持久化建模中间结果到excel,方便复盘
## 四、保存的建模结果相关文件说明 1、all_data_eda.xlsx:整体数据的EDA情况
2、build_model_log_var_jpg文件夹,最终入模变量的分箱画图,在”build_model_log.xlsx”最后1个sheet也有记录
3、build_model_log.xlsx:构建整个模型的过程日志,记录有利复盘
4、fb.pkl、woetf.pkl、lrmodel.pkl、in_model_var.pkl:fb.pkl分箱文件,woetf.pkl转woe文件,lrmodel.pkl模型文件,入模变量文件
5、scorecard.pkl、scorecard.csv、scorecard.json:评分卡的pkl、csv、json格式。在”build_model_log.xlsx”的”scorecard_structure”sheet也有记录
6、var_bin_woe_format.csv、var_bin_woe_format.json、var_bin_woe.csv、var_bin_woe.json、var_split_point_format.csv、var_split_point_format.json、var_split_point.csv、var_split_point.json:分箱文件和转woe文件的csv、json格式
7、lr_auc_ks_psi.csv:模型的auc、ks、psi
8、lr_pred_to_report_data.csv:构建建模报告的数据
9、lr_test_input.csv:用于模型上线后,将次数据喂入模型,对比和lr_pred_to_report_data.csv结果是否一致。验证模型上线的正确性
## 五、依赖包安装(建议先创建虚拟环境,不创建虚拟环境也行,创建虚拟环境是为了不和其它项目有依赖包的冲突,不创建虚拟环境的话在基础python环境执行pip install即可) ####创建虚拟环境 conda create -y –force -n autobmt python=3.7.2 ####激活虚拟环境 conda activate autobmt
### 依赖包安装方式一,执行如下命令安装依赖的包 pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for autobmt-0.1.4-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 726c9e129fa2aefdb832fd6b33a28b3d1c828ddff8ee69cd66a301a356dfa328 |
|
MD5 | 78e6a41e940c0d7fbeecf5038901bc39 |
|
BLAKE2b-256 | 6a2cad2ff75eb307dccd9bf73ca80b111111cd3de3341c893aee201dbbe75a17 |