Skip to main content

Autocare Tx Model

Project description

Autocare DLT

Autocare DeepLearning Toolkit은 SNUAILAB의 모델 개발 및 Autocare T의 학습을 지원하기 위한 pytorch 기반 deep learning toolkit입니다.

Updates

  • v0.2
    • HPO 추가
    • Mutli-GPU 지원
    • inference 및 data_selection에서 coco input 지원

설치

Prerequisite

  • Python >= 3.9
  • CUDA == 11.3
  • pytorch >= 1.12.1 (link)
    • torchvision >= 0.13.1

Install

  • tx_model은 repo를 clone하여 CLI로 사용하는 방식 및 python package(*.whl) 파일을 통하여 설치하는 방법 2가지를 지원한다.

git clone

git clone git@github.com:snuailab/autocare_dlt.git
cd autocare_dlt
pip install -r requirements.txt

package 설치

pip install autocare_dlt

실행

Model config 준비

  • 기본적인 template은 ./models참조
  • 사용하고자 하는 Model에 맞춰서 config값 수정
    • 모듈에 따라 hyper-parameter값이 다양해지기 때문에 해당 모듈의 code를 참조하여 수정 할 것을 권장

Data config 준비

  • 기본적인 template은 ./datasets 참조
  • 사용하고자 하는 Dataset에 맞춰서 config값 수정
    • workers_per_gpu (int) : dataloader work 갯수
    • batch_size_per_gpu (int): GPU당 batch size
    • img_size (int): 모델의 image size (img_size, img_size) → 추후 업데이트 예정
    • train, val, test (dict): 각 dataset의 config
      • type: dataset의 type
      • data_root: data의 root path
      • ann: annotation 파일의 path
      • augmentation: data augmentation세팅
        • CV2 모듈들이 먼저 적용되고 pytorch(torchvision) 모듈 적용됨
        • top down 순서대로 적용

지원 하는 package Tools

  • 해당 tool들을 import하여 사용 혹은 cli로 실행

autocare_dlt.tools.train.run(exp_name: str, model_cfg: str, data_cfg: str, gpus: str = '0', ckpt: ~typing.Union[str, dict] = None, world_size: int = 1, output_dir: str = 'outputs', resume: bool = False, fp16: bool = False, ema: bool = False)→ tooNone

Run training

Parameters

  • exp_name (str) – experiment name. a folder with this name will be created in the output_dir, and the log files will be saved there.

  • model_cfg (str) – path for model configuration file

  • data_cfg (str) – path for dataset configuration file

  • gpus (str, optional) – GPU IDs to use. Default to ‘0’

  • ckpt (str, optional) – path for checkpoint file. Defaults to None.

  • world_size (int, optional) – world size for ddp. Defaults to 1.

  • output_dir (str, optional) – log output directory. Defaults to ‘outputs’.

  • resume (bool, optional) – whether to resume the previous training or not. Defaults to False.

  • fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.

  • ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.

autocare_dlt.tools.inference.run(inputs: strmodel_cfg: stroutput_dir: strgpus: strckpt: Union[str, dict]input_size: list = Noneletter_box: bool = Nonevis: bool = Falsesave_imgs: bool = Falseroot_dir: str = '')→ None

Run inference

Parameters

  • inputs (str) – path for input - image, directory, or json

  • model_cfg (str) – path for model configuration file

  • output_dir (str) – path for inference results

  • gpus (str) – GPU IDs to use

  • ckpt (Union[str, dict]) – path for checkpoint file or state dict

  • input_size (list, optional) – input size of model inference. Defaults to [640].

  • letter_box (bool, optional) – whether to use letter box or not. Defaults to False.

  • vis (bool, optional) – whether to visualize inference in realtime or not. Defaults to False.

  • save_imgs (bool, optional) – whether to draw and save inference results as images or not. Defaults to False.

  • root_dir (str, optional) – path for input image when using json input. Defaults to “”.

autocare_dlt.tools.eval.run(model_cfg: strdata_cfg: strgpus: strckpt: Union[str, dict])→ None

Evaluate a model

Parameters

  • model_cfg (str) – path for model configuration file

  • data_cfg (str) – path for dataset configureation file

  • gpus (str) – GPU IDs to use

  • ckpt (Union[str, dict]) – path for checkpoint file or state dict

autocare_dlt.tools.export_onnx.run(output_name: strmodel_cfg: strckpt: Union[str, dict]input_size: list = Noneopset: int = 11no_onnxsim: bool = False)→ None

Export onnx file

Parameters

  • output_name (str) – file name for onnx output (.onnx)

  • model_cfg (str) – path for model configuration file

  • ckpt (Union[str, dict]) – path for checkpoint file or state dict

  • input_size (list, optional) – input size of model. use model config value if input_size is None. Default to None.

  • opset (int, optional) – onnx opset version. Defaults to 11.

  • no_onnxsim (bool, optional) – whether to use onnxsim or not. Defaults to False.

autocare_dlt.tools.data_selection.run(model_cfg: strckpt: Union[str, dict]inputs: strnum_outputs: intoutput_dir: strgpus: strinput_size: list = Noneletter_box: bool = Nonecopy_img: bool = Falseroot_dir: str = '')→ None

Select active learning data

Parameters

  • model_cfg (str) – path for model configuration file

  • ckpt (Union[str, dict]) – path for checkpoint file or state dict

  • inputs (str) – path for input - image, directory, or json

  • num_outputs (int) – number of images to select

  • output_dir (str) – path for output result

  • gpus (str) – GPU IDs to use

  • input_size (list, optional) – input size of model inference. Defaults to [640].

  • letter_box (bool, optional) – whether to use letter box or not. Defaults to False.

  • copy_img (bool, optional) – whether to copy images to output. Defaults to False.

  • root_dir (str, optional) – path for input image when using json input. Defaults to “”.

autocare_dlt.tools.hpo.run(exp_name: strmodel_cfg: strdata_cfg: str, hpo_cfg: str = None gpus: str = '0'ckpt: ~typing.Union[strdict] = Noneworld_size: int = 1output_dir: str = 'outputs'resume: bool = Falsefp16: bool = Falseema: bool = False)→ None

Run Hyperparameter Optimization

Parameters

  • exp_name (str) – experiment name. a folder with this name will be created in the output_dir, and the log files will be saved there.

  • model_cfg (str) – path for model configuration file

  • data_cfg (str) – path for dataset configuration file

  • hpo_cfg (str, optional): path for hpo configuration file. Default to None.

  • gpus (str, optional) – GPU IDs to use. Default to ‘0’

  • ckpt (str, optional) – path for checkpoint file. Defaults to None.

  • world_size (int, optional) – world size for ddp. Defaults to 1.

  • output_dir (str, optional) – log output directory. Defaults to ‘outputs’.

  • resume (bool, optional) – whether to resume the previous training or not. Defaults to False.

  • fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.

  • ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.

CLI 명령어 예시

Supervised Learning

python autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #}

Distributed training (Multi-GPU training)

Multi-GPU 훈련을 진행하기 위해서는 'python'이 아닌 'torchrun'을 이용해야 함

torchrun autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...} --multi_gpu True

[권장] 같은 서버에서 다수의 Multi-GPU 훈련을 하기 위해서는 아래 명령어를 이용해야 함

torchrun --rdzv_backend=c10d --rdzv_endpoint=localhost:0 --nnodes=1 autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...}
  • training 결과는 outputs/{your_exp} 위치에 저장됨

run evaluation

python autocare_dlt/tools/eval.py --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus 0

export onnx

python autocare_dlt/tools/export_onnx.py --output_name {path}/{model_name}.onnx --model_cfg {path}/{model}.json --batch_size 1 --ckpt {path}/{ckpt}.pth

run inference

  • OCR관련
    • Prerequest : 한글 폰트 파일 (ex. NanumPen.ttf)
python tools/inference.py --inputs {path}/{input_dir, img, video, coco json} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --input_size {width} {height} --gpus {gpu_id} (optional)--root_dir {root path of coco}

run data selection

python tools/data_selection.py --inputs {path}/{input_dir, cocojson} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --num_outputs {int} --input_size {width} {height} --letter_box {bool} --gpus {gpu_id} (optional)--root_dir {root path of coco}

References

This code is based on and inspired on those repositories (TBD)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autocare_dlt-0.2.6.tar.gz (114.5 kB view details)

Uploaded Source

Built Distribution

autocare_dlt-0.2.6-py3-none-any.whl (175.7 kB view details)

Uploaded Python 3

File details

Details for the file autocare_dlt-0.2.6.tar.gz.

File metadata

  • Download URL: autocare_dlt-0.2.6.tar.gz
  • Upload date:
  • Size: 114.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for autocare_dlt-0.2.6.tar.gz
Algorithm Hash digest
SHA256 3138806b862f8bf0b66630d43d9ffa5623b51f97b3f449fb3f4018a1bcd405a5
MD5 49b6ad0297fe02ef3917320be323229a
BLAKE2b-256 a7b29ea434e155e14043d62582531af97d41db2600d2ebe1939cc7aefdb9f833

See more details on using hashes here.

File details

Details for the file autocare_dlt-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: autocare_dlt-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 175.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for autocare_dlt-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 134af845f6a400f9eb4a7b3eb43fa1380ff7f619b17a606e31be3399ae3eddce
MD5 0d88082aae771bb8ba3bfc09a90958d6
BLAKE2b-256 e515addabaaa4e91466081a602b274d1b641e0b3dbde640c81807fd934aa52c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page