Autocare Tx Model
Project description
Autocare DLT
Autocare DeepLearning Toolkit은 SNUAILAB의 모델 개발 및 Autocare T의 학습을 지원하기 위한 pytorch 기반 deep learning toolkit입니다.
Updates
- v0.2
- HPO 추가
- Mutli-GPU 지원
- inference 및 data_selection에서 coco input 지원
설치
Prerequisite
- Python >= 3.9
- CUDA == 11.3
- pytorch >= 1.12.1 (link)
- torchvision >= 0.13.1
Install
- tx_model은 repo를 clone하여 CLI로 사용하는 방식 및 python package(*.whl) 파일을 통하여 설치하는 방법 2가지를 지원한다.
git clone
git clone git@github.com:snuailab/autocare_dlt.git
cd autocare_dlt
pip install -r requirements.txt
package 설치
pip install autocare_dlt
실행
Model config 준비
- 기본적인 template은 ./models참조
- 사용하고자 하는 Model에 맞춰서 config값 수정
- 모듈에 따라 hyper-parameter값이 다양해지기 때문에 해당 모듈의 code를 참조하여 수정 할 것을 권장
Data config 준비
- 기본적인 template은 ./datasets 참조
- 사용하고자 하는 Dataset에 맞춰서 config값 수정
- workers_per_gpu (int) : dataloader work 갯수
- batch_size_per_gpu (int): GPU당 batch size
- img_size (int): 모델의 image size (img_size, img_size) → 추후 업데이트 예정
- train, val, test (dict): 각 dataset의 config
- type: dataset의 type
- data_root: data의 root path
- ann: annotation 파일의 path
- augmentation: data augmentation세팅
- CV2 모듈들이 먼저 적용되고 pytorch(torchvision) 모듈 적용됨
- top down 순서대로 적용
지원 하는 package Tools
- 해당 tool들을 import하여 사용 혹은 cli로 실행
autocare_dlt.tools.train.run(exp_name: str, model_cfg: str, data_cfg: str, gpus: str = '0', ckpt: ~typing.Union[str, dict] = None, world_size: int = 1, output_dir: str = 'outputs', resume: bool = False, fp16: bool = False, ema: bool = False)→ tooNone
Run training
Parameters
-
exp_name (str) – experiment name. a folder with this name will be created in the
output_dir
, and the log files will be saved there. -
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configuration file
-
gpus (str, optional) – GPU IDs to use. Default to ‘0’
-
ckpt (str, optional) – path for checkpoint file. Defaults to None.
-
world_size (int, optional) – world size for ddp. Defaults to 1.
-
output_dir (str, optional) – log output directory. Defaults to ‘outputs’.
-
resume (bool, optional) – whether to resume the previous training or not. Defaults to False.
-
fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.
-
ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.
autocare_dlt.tools.inference.run(inputs: str, model_cfg: str, output_dir: str, gpus: str, ckpt: Union[str, dict], input_size: list = None, letter_box: bool = None, vis: bool = False, save_imgs: bool = False, root_dir: str = '')→ None
Run inference
Parameters
-
inputs (str) – path for input - image, directory, or json
-
model_cfg (str) – path for model configuration file
-
output_dir (str) – path for inference results
-
gpus (str) – GPU IDs to use
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
input_size (list, optional) – input size of model inference. Defaults to [640].
-
letter_box (bool, optional) – whether to use letter box or not. Defaults to False.
-
vis (bool, optional) – whether to visualize inference in realtime or not. Defaults to False.
-
save_imgs (bool, optional) – whether to draw and save inference results as images or not. Defaults to False.
-
root_dir (str, optional) – path for input image when using json input. Defaults to “”.
autocare_dlt.tools.eval.run(model_cfg: str, data_cfg: str, gpus: str, ckpt: Union[str, dict])→ None
Evaluate a model
Parameters
-
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configureation file
-
gpus (str) – GPU IDs to use
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
autocare_dlt.tools.export_onnx.run(output_name: str, model_cfg: str, ckpt: Union[str, dict], input_size: list = None, opset: int = 11, no_onnxsim: bool = False)→ None
Export onnx file
Parameters
-
output_name (str) – file name for onnx output (.onnx)
-
model_cfg (str) – path for model configuration file
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
input_size (list, optional) – input size of model. use model config value if input_size is None. Default to None.
-
opset (int, optional) – onnx opset version. Defaults to 11.
-
no_onnxsim (bool, optional) – whether to use onnxsim or not. Defaults to False.
autocare_dlt.tools.data_selection.run(model_cfg: str, ckpt: Union[str, dict], inputs: str, num_outputs: int, output_dir: str, gpus: str, input_size: list = None, letter_box: bool = None, copy_img: bool = False, root_dir: str = '')→ None
Select active learning data
Parameters
-
model_cfg (str) – path for model configuration file
-
ckpt (Union[str, dict]) – path for checkpoint file or state dict
-
inputs (str) – path for input - image, directory, or json
-
num_outputs (int) – number of images to select
-
output_dir (str) – path for output result
-
gpus (str) – GPU IDs to use
-
input_size (list, optional) – input size of model inference. Defaults to [640].
-
letter_box (bool, optional) – whether to use letter box or not. Defaults to False.
-
copy_img (bool, optional) – whether to copy images to output. Defaults to False.
-
root_dir (str, optional) – path for input image when using json input. Defaults to “”.
autocare_dlt.tools.hpo.run(exp_name: str, model_cfg: str, data_cfg: str, hpo_cfg: str = None gpus: str = '0', ckpt: ~typing.Union[str, dict] = None, world_size: int = 1, output_dir: str = 'outputs', resume: bool = False, fp16: bool = False, ema: bool = False)→ None
Run Hyperparameter Optimization
Parameters
-
exp_name (str) – experiment name. a folder with this name will be created in the
output_dir
, and the log files will be saved there. -
model_cfg (str) – path for model configuration file
-
data_cfg (str) – path for dataset configuration file
-
hpo_cfg (str, optional): path for hpo configuration file. Default to None.
-
gpus (str, optional) – GPU IDs to use. Default to ‘0’
-
ckpt (str, optional) – path for checkpoint file. Defaults to None.
-
world_size (int, optional) – world size for ddp. Defaults to 1.
-
output_dir (str, optional) – log output directory. Defaults to ‘outputs’.
-
resume (bool, optional) – whether to resume the previous training or not. Defaults to False.
-
fp16 (bool, optional) – whether to use float point 16 or not. Defaults to False.
-
ema (bool, optional) – whether to use EMA(exponential moving average) or not. Defaults to False.
CLI 명령어 예시
Supervised Learning
python autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #}
Distributed training (Multi-GPU training)
Multi-GPU 훈련을 진행하기 위해서는 'python'이 아닌 'torchrun'을 이용해야 함
torchrun autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...} --multi_gpu True
[권장] 같은 서버에서 다수의 Multi-GPU 훈련을 하기 위해서는 아래 명령어를 이용해야 함
torchrun --rdzv_backend=c10d --rdzv_endpoint=localhost:0 --nnodes=1 autocare_dlt/tools/train.py --exp_name {your_exp} --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus {gpu #,#,...}
- training 결과는 outputs/{your_exp} 위치에 저장됨
run evaluation
python autocare_dlt/tools/eval.py --model_cfg {path}/{model}.json --data_cfg {path}/{data}.json} --ckpt {path}/{ckpt}.pth --gpus 0
export onnx
python autocare_dlt/tools/export_onnx.py --output_name {path}/{model_name}.onnx --model_cfg {path}/{model}.json --batch_size 1 --ckpt {path}/{ckpt}.pth
run inference
- OCR관련
- Prerequest : 한글 폰트 파일 (ex. NanumPen.ttf)
python tools/inference.py --inputs {path}/{input_dir, img, video, coco json} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --input_size {width} {height} --gpus {gpu_id} (optional)--root_dir {root path of coco}
run data selection
python tools/data_selection.py --inputs {path}/{input_dir, cocojson} --model_cfg {path}/{model}.json --output_dir {path}/{output dir name} --ckpt {path}/{model_name}.pth --num_outputs {int} --input_size {width} {height} --letter_box {bool} --gpus {gpu_id} (optional)--root_dir {root path of coco}
References
This code is based on and inspired on those repositories (TBD)