Skip to main content

A tool for collecting ACS and geospatial data from the Census API

Project description

autocensus

A Python package for collecting American Community Survey (ACS) data and associated geometry from the Census API in a pandas dataframe.

Contents

Installation

autocensus requires Python 3.9 or higher. Install as follows:

pip install autocensus

To run autocensus, you must specify a Census API key via either the census_api_key keyword argument (as shown in the example below) or by setting the environment variable CENSUS_API_KEY.

Quickstart

from autocensus import Query

# Configure query
query = Query(
    estimate=1,
    years=[2017, 2018],
    variables=['DP03_0025E', 'S0103_C01_104E'],
    for_geo='county:033',
    in_geo=['state:53'],
    # Optional arg to add geometry: 'points', 'polygons', or None (default)
    geometry='points',
    # Fill in the following with your actual Census API key
    census_api_key='Your Census API key'
)

# Run query and collect output in dataframe
dataframe = query.run()

Output:

name geo_id geo_type year date variable_code variable_label variable_concept annotation value geometry
King County, Washington 0500000US53033 county 2017 2017-12-31 DP03_0025E Estimate!!COMMUTING TO WORK!!Mean travel time to work (minutes) SELECTED ECONOMIC CHARACTERISTICS 30.0 POINT (…)
King County, Washington 0500000US53033 county 2018 2018-12-31 DP03_0025E Estimate!!COMMUTING TO WORK!!Workers 16 years and over!!Mean travel time to work (minutes) SELECTED ECONOMIC CHARACTERISTICS 30.2 POINT (…)
King County, Washington 0500000US53033 county 2017 2017-12-31 S0103_C01_104E Total!!Estimate!!GROSS RENT!!Median gross rent (dollars) POPULATION 65 YEARS AND OVER IN THE UNITED STATES 1555.0 POINT (…)
King County, Washington 0500000US53033 county 2018 2018-12-31 S0103_C01_104E Estimate!!Total!!Renter-occupied housing units!!GROSS RENT!!Median gross rent (dollars) POPULATION 65 YEARS AND OVER IN THE UNITED STATES 1674.0 POINT (…)

Geometry

autocensus supports point- and polygon-based geometry data for many years and geographies by way of the Census Bureau's Gazetteer Files and Cartographic Boundary Files.

Here's how to add geometry to your data:

Points

Point data from the Census Bureau's Gazetteer Files is generally available for years from 2012 on in the following geographies:

  • Nation-level
    • urban area
    • zip code tabulation area
    • county
    • congressional district
    • metropolitan statistical area/micropolitan statistical area
    • american indian area/alaska native area/hawaiian home land
  • State-level
    • county subdivision
    • tract
    • place
    • state legislative district (upper chamber)
    • state legislative district (lower chamber)

Example:

from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:033'],
    in_geo=['state:53'],
    geometry='points'
)
dataframe = query.run()

Polygons

Polygon data from the Census Bureau's Cartographic Boundary Shapefiles is generally available for years from 2013 on in the following geographies:

  • Nation-level
    • nation
    • region
    • division
    • state
    • urban area
    • zip code tabulation area
    • county
    • congressional district
    • metropolitan statistical area/micropolitan statistical area
    • combined statistical area
    • american indian area/alaska native area/hawaiian home land
    • new england city and town area
  • State-level
    • alaska native regional corporation
    • block group
    • county subdivision
    • tract
    • place
    • public use microdata area
    • state legislative district (upper chamber)
    • state legislative district (lower chamber)

Example:

from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:033'],
    in_geo=['state:53'],
    geometry='polygons'
)
dataframe = query.run()

Shapefile resolution

By default, autocensus will attempt to fetch almost all shapefiles at a resolution of 1 : 500,000 (500k). Some sources among the Cartographic Boundary Shapefiles are also available at the lower resolutions of 1 : 5,000,000 (5m) or 1 : 20,000,000 (20m). To attempt to download a shapefile at a specific resolution, pass a value to Query's optional resolution parameter:

from autocensus import Query

query = Query(
    estimate=5,
    years=[2018],
    variables=['DP03_0025E'],
    for_geo=['county:*'],
    in_geo=['state:53'],
    geometry='polygons',
    # Optional arg to set a specific resolution: '500k', '5m', or '20m'
    resolution='20m'
)

Setting a specific resolution is only supported for polygon-based geometry.

Shapefile caching

To improve performance across queries that include polygon-based geometry data, autocensus will cache Census shapefiles on disk by default. The cache directory location depends on your OS; you can look it up from autocensus.constants.CACHE_DIRECTORY_PATH like so:

python -c "import autocensus; print(autocensus.constants.CACHE_DIRECTORY_PATH)"

Sometimes it is useful to clear this cache directory, especially if you're running into persistent shapefile-related problems. You can clear the cache by manually deleting the cache directory or by executing the autocensus.clear_cache function:

python -c "import autocensus; autocensus.clear_cache()"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autocensus-2.2.0.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

autocensus-2.2.0-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file autocensus-2.2.0.tar.gz.

File metadata

  • Download URL: autocensus-2.2.0.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.2 Darwin/23.5.0

File hashes

Hashes for autocensus-2.2.0.tar.gz
Algorithm Hash digest
SHA256 72013e495778bc10bfb787ccd97541341aa4b041ac1265670753a60a8ab8ae6d
MD5 8faaaa0e830b6d2fddb159b0374b5298
BLAKE2b-256 fc61b58ba8967e604454e318b013501ffb674f5498ebd6f24899e08205ab1511

See more details on using hashes here.

File details

Details for the file autocensus-2.2.0-py3-none-any.whl.

File metadata

  • Download URL: autocensus-2.2.0-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.2 Darwin/23.5.0

File hashes

Hashes for autocensus-2.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f485184f524ba2b528964b6d04eeb8c87c1210160fde59dcac4173ee1b85ca98
MD5 382df47dac4b2586594b8cf7782c9049
BLAKE2b-256 989858a98c5a77409232f6391679ae2257ba9641f8a1320c213a71928cef7677

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page