Skip to main content

Auto-generate Click-based CLIs from python3 type annotations.

Project description


AutoClick creates Click-based CLIs using type annotations.

The simplest use of AutoClick requires annotating your main method with @autoclick.command:

import autoclick

def main(greeting: str, name: str):
    print(f"{greeting} {name}")

if __name__ == "__main__":
$ python --help

  --help  Show this message and exit.

For additional customization, keyword arguments can be passed to the command decorator:

import autoclick

        "greeting": "G",
        "name": "n"
def main(greeting: str = "hello", name: str = "human"):
    print(f"{greeting} {name}")
$ python --help
Usage: [OPTIONS]

  -G, --greeting TEXT  [default: hello]
  -n, --name TEXT      [default: human]
  --help               Show this message and exit.

Type conversion

In Click, type conversion can be done either in a callback or by using a callable type (such as a subclass of ParamType) as the type. In AutoClick, type conversions are performed automatically based on type annotations for callable types. However, for more complex type conversion, there are three additional methods:

  1. Automatic conversion functions. A conversion function is decorated by @conversion. The conversion decorator by default infers the type being converted to from the return annotation. Otherwise, the destination type can be specified as an argument to the decorator. The decorator registers the function as the converter for the specified type. When that type is encountered as an annotation of a parameter to a command function, the converter function is used to convert the string argument to that type.
import autoclick

class Bork:
    def __init__(self, n: int):
        self.n = n

    def __str__(self):
        print(",".join(["bork"] * self.n))

def bork(n: int) -> Bork:
    return Bork(n)

def main(b: Bork):

In the case where there needs to be specialized handling of common types, new types can be created using typing.NewType:

import autoclick
import typing

DoubleInt = typing.NewType("DoubleInt", int)

def double_int(i: str):
    return int(i) * 2

def main(i1: int, i2: DoubleInt):
    print(i1, i2)
  1. Conversion functions can also be specified explicitly in the command decorator:
import autoclick

        "a": double_int
def main(a: int):

Note that any of the types in the click.Types package can also be used in this way.

  1. For composite types, the autoclick.composite_type and autoclick.composite_factory functions can be used. An example of a composite type is a class that requires more than one parameter to its constructor. For composite types, the same annotation-based CLI creation is performed, and the parameters are injected into the CLI in place of the composite parameter.
import autoclick
class Foo:
    def __init__(self, bar: str, baz: int): = bar
        self.baz = baz

def main(foo: Foo):
    print(, foo.baz)

In this case, the options to main would be --foo-bar and --foo-baz. Once the CLI is processed, the values of these options are used to construct the Foo instance, which is then passed to the call to main. The parameter name in the command function is prepended to the parameter names of the composite type, so that a composite type can be used multiple types in a command function signature.

A autoclick.composite_factory function returns a complex type. For example, the code below is equivalent to the code above:

import autoclick

class Foo:
    def __init__(self, bar: str, baz: int):

def foo_factory(bar: str, baz: int):
    return Foo(bar, baz)

Conditionals and Validations

Conditionals and Validations are similar - they are both decorators that take **kwargs parameter. The keywords are parameter names and values are parameter values. When the function takes multiple parameters, they should specify the order; ordering depends on python 3.5+ behavior that dictionaries are ordered implicitly.

A conditional function is used to modify the values of one or more parameters conditional on the value(s) of other parameters. A conditional function may return a dict with keys being parameter names that should be updated, and values being the new parameter values.

A validation function is intended to check that one or more parameter values conform to certain restrictions. The return value of a validation function is ignored.

Both conditional and validation functions can throw ValidationError.

These functions can be associated with parameters in two ways. First, using the conditionals and validations arguments of the command decorator. These are dicts with a parameter name or tuple of parameter names being the key and the function being the value. Second, validation functions can be associated with parameters when they are decorated with @autoclick.validation and the parameter type matches the type argument of the validation decorator. Multi-parameter validations can only be associated via the first method. Since conditionals are expected to be multi-valued, there is no @autoclick.conditional annotation, i.e. they must always be explicitly specified.

Type matching

You can also use distinct types created by the typing.NewType function for type matching validations. For example, if you want to define a parameter that must be positive and even:

import autoclick
from typing import NewType

PositiveEven = NewType('PositiveEven', int)

def validate_positive_even(arg: int):
  if arg < 0:
    raise autoclick.ValidationError()
  if arg % 2 != 0:
    raise autoclick.ValidationError()

Note that the typing library does not currently provide an intersection type. Thus, Positive, Even, and PositiveEven must all be distinct validations. There are two ways to simplify:

  1. Add the parameter to the validation dict of the command decorator with a tuple of mutliple functions as the value:
import autoclick

        "a": positive, even
  1. Create a composite validation:
import autoclick

@autoclick.validation(PositiveEven, (positive, even))
def validate_positive_even(arg: int):

or even

import autoclick
autoclick.validation(PositiveEven, (positive, even))

Docstring utilization

AutoClick uses the docparse library to parse the docstrings of command functions and composites to extract help text. Note that currently docparse only supports Google-style docstrings.

import autoclick

def main(x: str = "hello"):
    """Print a string

        x: The string to print.

if __name__ == "__main__":
$ python --help
Usage: [OPTIONS] [X]

  Print a string

  -x, --x TEXT  The string to print.  [default: hello]
  --help        Show this message and exit.


AutoClick CLIs can have multiple subcommands, by creating command groups:

from autoclick import group

def myprog():

def say_hi(name: str):
    print(f"hello {name}")
def say_bye(name: str):
    print(f"byebye {name}")

AutoClick provides alternative group types. For example, DefaultAutoClickGroup can take a default command name to run when a command is not specified:

from autoclick import group
from autoclick.commands import DefaultAutoClickGroup

def myprog():

# This command is run by default if the command name is not specified
def hello(name: str):
    print(f"hi {name}")


$ pip intall autoclick

Runtime Dependencies

  • Python 3.6+
  • docparse

Build dependencies

  • poetry 0.12+
  • pytest (with pytest-cov plugin)


Option attribute inference

The following sections describe details of how the arguments to click classes/functions are inferred from the type and docstring information:

All Parameters

  • name (long): parameter name; underscores converted to dashes unless keep_underscores=True in the command decorator.
  • name (short): starting from the left-most character of the parameter name, the first character that is not used by another parameter or by any built-in; can be overridden by specifying the 'parameter_names' dictionary in the command decorator.
  • type: inferred from the type hint; if type hint is missing, inferred from the default value; if default value is missing, str.
  • required: by default, true for positional arguments (Arguments) and false for keyword arguments (Options); if positionals_as_options=True in the command decorator, positional arguments are instead required Options. Required keyword arguments can be specified in the 'required' list in the command decorator.
  • default: unset for positional arguments, keyword value for keyword arguments.
  • nargs: 1 unless type is Tuple (in which case nargs is the number of arguments to the Tuple).


  • hide_input: False unless the command 'hidden' parameter is specified and includes the parameter name.
  • is_flag: True for keyword arguments of type boolean; assumed to be the True option unless the name starts with 'no'; the other option will always be inferred by adding/removing 'no-'
  • multiple: True for sequence types
  • help: Parsed from docstring.


  • Documentation for positional arguments (see )
  • Handle return values (e.g. if a int, treat as a return code; if a dict, convert to JSON and write to stdout, etc)
  • Look at incorporating features from contributed packages:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoclick-0.8.1.tar.gz (27.7 kB view hashes)

Uploaded source

Built Distribution

autoclick-0.8.1-py3-none-any.whl (29.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page