Skip to main content


Project description


* Free software: MIT license

Activate virtual environment
Together with the autoCorrection package you will get


packages automatically installed, if not present.

If you don't wannt to install these packages globally, please use virtual environment.

If you have problems with virtualenv, installing using conda may help:

(Installation of conda:

Make sure you are using python 3.

conda create -n mypyth3 python=3.6

source activate mypyth3

conda install virtualenv

activate new environment in active python 3 environment:

virtualenv env-with-autoCorrection

source env-with-autoCorrection/bin/activate

Check if you are still using python 3:

python --version

Package Installation


pip install autocontrol

Deactivate virtual environment





#in python:
import autocontrol
import numpy as np
counts = np.random.negative_binomial(n = 20, p=0.2, size = (10,8))
sf = np.ones((10,8))
corrector = autocontrol.correctors.AECorrector()
c = corrector.correct(counts = counts, size_factors = sf)

#in R:
autoCorrection <- import("autocontrol")
corrected <- autoCorrection$correctors$AECorrector(model_name, model_directory)$correct(COUNTS, SIZE_FACTORS, only_predict=FALSE)



0.0.1 (2017-11-01)

* First release on PyPI.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for autocontrol, version 1.0.0
Filename, size File type Python version Upload date Hashes
Filename, size autocontrol-1.0.0.tar.gz (359.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page