Skip to main content

Automatically assign available hardware on the fly, in-line with PyTorch code.

Project description

autodevice

Automatically assign devices in-line with pytorch code

Usage

from autodevice import AutoDevice

x = torch.randn([200, 50]).to(AutoDevice())

CUDA/GPU:

tensor([[ 2.6905, -0.3037, -0.3607],
        [ 0.2258, -0.1755,  0.6599],
        [ 1.3046, -0.9389,  0.7358]], device='cuda:0')

CPU:

tensor([[ 2.6905, -0.3037, -0.3607],
        [ 0.2258, -0.1755,  0.6599],
        [ 1.3046, -0.9389,  0.7358]])

On Apple Silicon (M1, M2):

tensor([[ 0.5382,  1.1173,  1.1175],
        [-0.0125, -0.2406,  0.2343],
        [-0.6067, -0.7728,  0.1697]], device='mps:0')

Installation

pip install autodevice

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodevice-0.1.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

autodevice-0.1.0-py3-none-any.whl (4.7 kB view details)

Uploaded Python 3

File details

Details for the file autodevice-0.1.0.tar.gz.

File metadata

  • Download URL: autodevice-0.1.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for autodevice-0.1.0.tar.gz
Algorithm Hash digest
SHA256 458731ab79d7cccdd041f40f7c387a424ba83669febc8ef8f292a9d219601b2a
MD5 81581c739f4e9052cd22d403fa4f55fc
BLAKE2b-256 f15693ed616b21cea29d52b0c8e3bb47dde210cece99a1d6738974080882e00d

See more details on using hashes here.

File details

Details for the file autodevice-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: autodevice-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 4.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for autodevice-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5c5f57c45b40cd4af62978abd3f5beef5b2f088f506f5c729c3bce5d70052eca
MD5 e47c84bd6cf9a5d3c54fa5b3f97095d7
BLAKE2b-256 cd79fc07ca3758b683e42417a47be229b72110d10f5e0e7985458e02c1d88fc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page