EfficientSAM + YOLO-World base model for use with Autodistill
Project description
Autodistill EfficientYOLOWorld Module
This repository contains the code supporting the EfficientYOLOWorld base model for use with Autodistill.
EfficientYOLOWorld is a combination of two models:
- YOLO-World, a zero-shot object detection model, and;
- EfficientSAM, an image segmentation model.
This model runs EfficientSAM on each bounding box region generated by YOLO-World. This allows you to retrieve both the bounding box and the segmentation mask for each object of interest in an image.
Read the full Autodistill documentation.
Read the EfficientYOLOWorld Autodistill documentation.
Installation
To use EfficientYOLOWorld with autodistill, you need to install the following dependency:
pip3 install autodistill-efficient-yolo-world
Quickstart
from autodistill_efficient_yolo_world import EfficientYOLOWorld
from autodistill.detection import CaptionOntology
import cv2
import supervision as sv
# define an ontology to map class names to our EfficientYOLOWorld prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EfficientYOLOWorld(ontology=CaptionOntology({"book": "book"}))
# predict on an image
result = base_model.predict("bookshelf.jpeg", confidence=0.1)
image = cv2.imread("bookshelf.jpeg")
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(
scene=image.copy(),
detections=result,
)
sv.plot_image(annotated_frame)
base_model.label("./context_images", extension=".jpeg")
License
EfficientSAM is licensed under an Apache 2.0 license.
YOLO-World is licensed under a GPL-3.0 license.
🏆 Contributing
We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file autodistill-efficient-yolo-world-0.1.1.tar.gz
.
File metadata
- Download URL: autodistill-efficient-yolo-world-0.1.1.tar.gz
- Upload date:
- Size: 5.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a23f90388868e5d1f40482e85a64e5753d24e88f3e38c70231b9657e2eca0bca |
|
MD5 | c2b60140b7084c6ae6ca90b97662d47f |
|
BLAKE2b-256 | 632f145af030407771d48be1bb862a9fc6efdba085376bee681dd74fbe85df4d |
File details
Details for the file autodistill_efficient_yolo_world-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: autodistill_efficient_yolo_world-0.1.1-py3-none-any.whl
- Upload date:
- Size: 3.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef631c6f1413c4c66d66ae7c94675d3613a63d777f7d849e0955b55fe45494b2 |
|
MD5 | 0bc0fa5485f6bd95c25bd2083f0d57af |
|
BLAKE2b-256 | 6bdec28b11dead9f88ea3551ef11b477fd286f130a1654e4f2619e801777e5e3 |