Skip to main content

EvaClip module for use with Autodistill

Project description

Autodistill EvaCLIP Module

This repository contains the code supporting the CLIP base model for use with Autodistill.

EvaCLIP, is a computer vision model trained using pairs of images and text. It can be used for classification of images.

Read the full Autodistill documentation.

Read the EvaCLIP Autodistill documentation.

Installation

To use EvaCLIP with autodistill, you need to install the following dependency:

pip3 install autodistill-evaclip

Quickstart

from autodistill_evaclip import EvaCLIP
from autodistill.detection import CaptionOntology

# define an ontology to map class names to our EvaCLIP prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = EvaCLIP(
    ontology=CaptionOntology(
        {
            "person": "person",
            "a forklift": "forklift"
        }
    )
)

results = base_model.predict("./context_images/test.jpg")

print(results)

base_model.label("./context_images", extension=".jpeg")

License

The code in this repository is licensed under an MIT license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill_eva_clip-0.1.0.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

autodistill_eva_clip-0.1.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file autodistill_eva_clip-0.1.0.tar.gz.

File metadata

  • Download URL: autodistill_eva_clip-0.1.0.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for autodistill_eva_clip-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5218108010e98c9b3b855cac0e53c9f270b3d7dacb783eb3d9e519c4789dbf33
MD5 7094d738eb4802c0b5a5a7fb9c56ba08
BLAKE2b-256 af76ae0a3de8882e98ec28d81433ad799cc0efcd2e9e1d2f3b65ba8f6941c879

See more details on using hashes here.

File details

Details for the file autodistill_eva_clip-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_eva_clip-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a3269301b9f96d8564bd22727b380cd8248dd0f779fe4a48aaff24f2787ad808
MD5 8b2686a3fe4fd3beabbce6c27792713f
BLAKE2b-256 b116ac5366a62164fe1e252a3c800b62505ccfdd0f42b38eb1325c3ac85d7f53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page