Skip to main content

Kosmos-2 base model for use with Autodistill.

Project description

Autodistill Kosmos-2 Module

This repository contains the code supporting the Kosmos-2 base model for use with Autodistill.

Kosmos-2, developed by Microsoft, is a multimodal language model that you can use for zero-shot object detection. You can use Kosmos-2 with autodistill for object detection.

Read the full Autodistill documentation.

Read the Kosmos-2 Autodistill documentation.

Installation

To use Kosmos-2 with autodistill, you need to install the following dependency:

pip3 install autodistill-kosmos-2

Quickstart

from autodistill_kosmos_2 import Kosmos2

# define an ontology to map class names to our Kosmos2 prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = Kosmos2(
    ontology=CaptionOntology(
        {
            "person": "person",
            "a forklift": "forklift"
        }
    )
)

predictions = base_model.predict("./example.png")

base_model.label("./context_images", extension=".jpeg")

License

This package is implemented using the Transformers Kosmos-2 implementation. The underlying Kosmos-2 model, developed by Microsoft, is licensed under an MIT license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-kosmos-2-0.1.1.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

autodistill_kosmos_2-0.1.1-py3-none-any.whl (4.6 kB view details)

Uploaded Python 3

File details

Details for the file autodistill-kosmos-2-0.1.1.tar.gz.

File metadata

  • Download URL: autodistill-kosmos-2-0.1.1.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for autodistill-kosmos-2-0.1.1.tar.gz
Algorithm Hash digest
SHA256 a86a0edfaf3ffd3f2569036f75c6b94bd7d42389bcf4cb44d6b65ad4d9cc65e9
MD5 f4419803939b5b3bcd28ab0af63494a4
BLAKE2b-256 34bb4c354bb3faa80abac8d3b76fb4672a7f9678270c75ff72257dfbd9384bc5

See more details on using hashes here.

File details

Details for the file autodistill_kosmos_2-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_kosmos_2-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 67074b9dc1d405c10d3e28342bb7be7a3476a29014733e20b89238b6bc06a3a3
MD5 8e7eb1a4eca200e565f648264348227d
BLAKE2b-256 71ce5217936d6abd316676eaf4e5925cdca23af297640016e21812892d6f2c20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page