Skip to main content

AWS Rekognition base model for use with Autodistill

Project description

Autodistill AWS Rekognition Module

This repository contains the code supporting the AWS Rekognition DetectLabels base model for use with Autodistill.

With this repository, you can label images using the AWS Rekognition DetectLabels API and train a fine-tuned model using the generated labels.

This is ideal if you want to train a model that you own on a custom dataset.

You can then use your trained model on your computer using Autodistill, or at the edge or in the cloud by deploying with Roboflow Inference.

See our Autodistill modules for GCP Vision and Azure Custom Vision if you are interested in using those services instead.

Read the full Autodistill documentation.

Read the Autodistill AWS Rekognition documentation.

Installation

[!NOTE]
Using this project will incur billing charges for API calls to the AWS Rekognition DetectLabels API. Refer to the AWS Rekognition pricing for more information. This package makes one API call per image you want to label.

To use the AWS Rekognition DetectLabels API with autodistill, you need to install the following dependency:

pip install autodistill-rekognition

You will then need to authenticate with the aws CLI.

Learn how to install the aws CLI.

Learn how to set up and authenticate with the aws CLI.

Quickstart

Note: You will need to install python-opencv to run the example below.

from autodistill_rekognition import Rekognition
from autodistill.detection import CaptionOntology
import supervision as sv
import cv2

# define an ontology to map class names to our Rekognition prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = Rekognition(
    ontology=CaptionOntology(
        {
            "Person": "Person",
            "a forklift": "forklift"
        }
    )
)

results = base_model.predict("image.jpeg")

# annotate predictions on an image
classes = base_model.ontology.classes()

box_annotator = sv.BoxAnnotator()

labels = [
	f"{classes[class_id]} {confidence:0.2f}"
	for _, _, confidence, class_id, _
	in detections
]

image = cv2.imread("image.jpeg")

annotated_frame = box_annotator.annotate(
	scene=image.copy(),
	detections=detections,
	labels=labels
)

sv.plot_image(image=annotated_frame, size=(16, 16))

License

This project is licensed under an MIT license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-rekognition-0.1.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

autodistill_rekognition-0.1.0-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file autodistill-rekognition-0.1.0.tar.gz.

File metadata

File hashes

Hashes for autodistill-rekognition-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b1b0650332fb67965097aa214c9d4f6bcd5cbe1bda43f10e290e93fc3d0f6ba2
MD5 e4ccfb51eab26766561afccdc0228cf6
BLAKE2b-256 1952c1d8823a866994ceadaeb13380e0356c23f89ece76d86052a698cb0b286e

See more details on using hashes here.

File details

Details for the file autodistill_rekognition-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_rekognition-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7ac6047fbc99a75303e1f81ae7500a750a3fc0f7c7ea3e91ed8309ccb53fe22b
MD5 32c7e0267b6b66dcc23fd4012ae750dd
BLAKE2b-256 7bb4859a590c28c982f8d0652c06ee5e244731dce96c027c20cf8302dc1923d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page