Skip to main content

Use object detection models in Hugging Face Transformers to automatically label data to train a fine-tuned model.

Project description

Autodistill Transformers Module

This repository contains the code supporting the Transformers models model for use with Autodistill.

Transformers, maintained by Hugging Face, features a range of state of the art models for Natural Language Processing (NLP), computer vision, and more.

This package allows you to write a function that calls a Transformers object detection model and use it to automatically label data. You can use this data to train a fine-tuned model using an architecture supported by Autodistill (i.e. YOLOv8, YOLOv5, or DETR).

Read the full Autodistill documentation.

Installation

To use Transformers with autodistill, you need to install the following dependency:

pip3 install autodistill-transformers

Quickstart

The following example shows how to use the Transformers module to label images using the Owlv2ForObjectDetection model.

You can update the inference() functon to use any object detection model supported in the Transformers library.

import cv2
import torch
from autodistill.detection import CaptionOntology
from autodistill.utils import plot
from transformers import OwlViTForObjectDetection, OwlViTProcessor

from autodistill_transformers import TransformersModel

processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")


def inference(image, prompts):
    inputs = processor(text=prompts, images=image, return_tensors="pt")
    outputs = model(**inputs)

    target_sizes = torch.Tensor([image.size[::-1]])

    results = processor.post_process_object_detection(
        outputs=outputs, target_sizes=target_sizes, threshold=0.1
    )[0]

    return results


base_model = TransformersModel(
    ontology=CaptionOntology(
        {
            "a photo of a person": "person",
            "a photo of a cat": "cat",
        }
    ),
    callback=inference,
)

# run inference
results = base_model.predict("image.jpg", confidence=0.1)

print(results)

# plot results
plot(
    image=cv2.imread("image.jpg"),
    detections=results,
    classes=base_model.ontology.classes(),
)

# label a directory of images
base_model.label("./context_images", extension=".jpeg")

License

This project is licensed under an MIT license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-transformers-0.1.1.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file autodistill-transformers-0.1.1.tar.gz.

File metadata

File hashes

Hashes for autodistill-transformers-0.1.1.tar.gz
Algorithm Hash digest
SHA256 fde324d48426fa1d9ec877cfc4016ce18521b621f9d367f9b1bbdcad7d607823
MD5 0d7316044f01372d4aecb0a0253792b9
BLAKE2b-256 029766c9a571e9341fa4dc981f6a9f5bf453e3b5ea189bf57ba524c8560a248e

See more details on using hashes here.

File details

Details for the file autodistill_transformers-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_transformers-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f1a6e3c3edbb91f3def12fd716bf1bd54687f157750f9e76a76544c70ee4a64d
MD5 585c108dee4e4be571959fbc8550699e
BLAKE2b-256 111b01bfb9a140956e164a89e33c73391c3f85174b38c824da976a4208272b3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page