Use object detection models in Hugging Face Transformers to automatically label data to train a fine-tuned model.
Project description
Autodistill Transformers Module
This repository contains the code supporting the Transformers models model for use with Autodistill.
Transformers, maintained by Hugging Face, features a range of state of the art models for Natural Language Processing (NLP), computer vision, and more.
This package allows you to write a function that calls a Transformers object detection model and use it to automatically label data. You can use this data to train a fine-tuned model using an architecture supported by Autodistill (i.e. YOLOv8, YOLOv5, or DETR).
Read the full Autodistill documentation.
Installation
To use Transformers with autodistill, you need to install the following dependency:
pip3 install autodistill-transformers
Quickstart
The following example shows how to use the Transformers module to label images using the Owlv2ForObjectDetection model.
You can update the inference()
functon to use any object detection model supported in the Transformers library.
import cv2
import torch
from autodistill.detection import CaptionOntology
from autodistill.utils import plot
from transformers import OwlViTForObjectDetection, OwlViTProcessor
from autodistill_transformers import TransformersModel
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
def inference(image, prompts):
inputs = processor(text=prompts, images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.Tensor([image.size[::-1]])
results = processor.post_process_object_detection(
outputs=outputs, target_sizes=target_sizes, threshold=0.1
)[0]
return results
base_model = TransformersModel(
ontology=CaptionOntology(
{
"a photo of a person": "person",
"a photo of a cat": "cat",
}
),
callback=inference,
)
# run inference
results = base_model.predict("image.jpg", confidence=0.1)
print(results)
# plot results
plot(
image=cv2.imread("image.jpg"),
detections=results,
classes=base_model.ontology.classes(),
)
# label a directory of images
base_model.label("./context_images", extension=".jpeg")
License
This project is licensed under an MIT license.
🏆 Contributing
We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file autodistill-transformers-0.1.1.tar.gz
.
File metadata
- Download URL: autodistill-transformers-0.1.1.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fde324d48426fa1d9ec877cfc4016ce18521b621f9d367f9b1bbdcad7d607823 |
|
MD5 | 0d7316044f01372d4aecb0a0253792b9 |
|
BLAKE2b-256 | 029766c9a571e9341fa4dc981f6a9f5bf453e3b5ea189bf57ba524c8560a248e |
File details
Details for the file autodistill_transformers-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: autodistill_transformers-0.1.1-py3-none-any.whl
- Upload date:
- Size: 4.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f1a6e3c3edbb91f3def12fd716bf1bd54687f157750f9e76a76544c70ee4a64d |
|
MD5 | 585c108dee4e4be571959fbc8550699e |
|
BLAKE2b-256 | 111b01bfb9a140956e164a89e33c73391c3f85174b38c824da976a4208272b3b |