Skip to main content

ViT module for use with Autodistill

Project description

Autodistill ViT Module

This repository contains the code supporting the ViT target model for use with Autodistill.

ViT is a classification model pre-trained on ImageNet-21k, developed by Google. You can train ViT classification models using Autodistill.

Read the full Autodistill documentation.

Read the ViT Autodistill documentation.

Installation

To use the ViT target model, you will need to install the following dependency:

pip3 install autodistill-vit

Quickstart

from autodistill_vit import ViT

target_model = ViT()

# train a model from a classification folder structure
target_model.train("./context_images_labeled/", epochs=200)

# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", conf=0.01)

License

The code in this repository is licensed under an Apache 2.0 license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-vit-0.1.0.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

autodistill_vit-0.1.0-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file autodistill-vit-0.1.0.tar.gz.

File metadata

  • Download URL: autodistill-vit-0.1.0.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for autodistill-vit-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5647d625a1b9f897328a1edf77a7435630ba5bfc1b791a17947331560241f958
MD5 71cba4f74624bfed8048e2cf7fd51350
BLAKE2b-256 12ba706462907af88808df357a3513c674335af226d1276ec26bd56369149c24

See more details on using hashes here.

File details

Details for the file autodistill_vit-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_vit-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fff1adb79031b5236aa7c4895223f0434e1679db9efcb0642688253f3da3ad68
MD5 5dd16e521fd83e8a2030a8af318d743f
BLAKE2b-256 0275bd2affd25601bdcce764bdfbd104feb89437c18d8f9dd924a464aa4bb633

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page