Skip to main content

YOLO World for use with Autodistill

Project description

Autodistill YOLO-World Module

This repository contains the code supporting the YOLO-World base model for use with Autodistill.

YOLO-World, developed by Tencent's AI Lab, is a zero-shot object detection model that can run in close-to-real-time on powerful GPUs. You can provide arbitrary text prompts to detect objects in images, and the model will return bounding boxes and class labels for the objects it finds.

You can use YOLO-World in Autodistill to detect objects.

Read the full Autodistill documentation.

Read the YOLO-World Autodistill documentation.

Installation

To use YOLO-World with autodistill, you need to install the following dependency:

pip3 install autodistill-yolo-world

Quickstart

from autodistill_yolo_world import YOLOWorldModel
from autodistill.detection import CaptionOntology
from autodistill.utils import plot
import cv2

# define an ontology to map class names to our GroundingDINO prompt
# the ontology dictionary has the format {caption: class}
# where caption is the prompt sent to the base model, and class is the label that will
# be saved for that caption in the generated annotations
# then, load the model
base_model = YOLOWorldModel(ontology=CaptionOntology({"book": "book"}))

# predict on an image
result = base_model.predict("bookshelf.jpeg", confidence=0.1)

plot(
    image=cv2.imread("./bookshelf.jpeg"),
    classes=base_model.ontology.classes(),
    detections=result
)

License

The YOLO-World model is released under a GPT-3.0 license.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-yolo-world-0.1.2.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

autodistill_yolo_world-0.1.2-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file autodistill-yolo-world-0.1.2.tar.gz.

File metadata

File hashes

Hashes for autodistill-yolo-world-0.1.2.tar.gz
Algorithm Hash digest
SHA256 2bcdda892f342f5bff7be1fad409b2cd60aaafebe3d66504b429b9fb71503412
MD5 2acc186156ccdf8b34945d505bb9decf
BLAKE2b-256 4e4f0a3039d5bf7511871e863de2e10a7ef467c361c623dccd12b82383f26fcb

See more details on using hashes here.

File details

Details for the file autodistill_yolo_world-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_yolo_world-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6e70303a8dd8e6733ecebde805ad9fff7a019ca5c03b7ce79440c97785602447
MD5 5425a1d457d9f25a0f49e9798853e435
BLAKE2b-256 2d17ad1183f0224df14ffcc2267677c9c8b00a18a435f9af7e7dbd735ede2fe1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page