Skip to main content

YOLO-NAS module for use with Autodistill

Project description

Autodistill YOLO-NAS Module

This repository contains the code supporting the YOLO-NAS target model for use with Autodistill.

YOLO-NAS is an object detection model developed by Deci AI.

You can use autodistill to train a YOLO-NAS object detection model on a dataset of labelled images generated by the base models that autodistill supports.

Read the full Autodistill documentation.

Read the YOLO-NAS Autodistill documentation.

Installation

To use the YOLOv5 target model, you will need to install the following dependency:

pip3 install autodistill-yolo-nas

Quickstart

from autodistill_yolo_nas import YOLONAS

target_model = YOLONAS("YOLOv5n.pt")

# train a model
# specify the directory where your annotations (in YOLO format) are stored
target_model.train("./context_images_labeled", epochs=20)

# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", confidence=0.01)

License

The YOLO-NAS model is licensed under the YOLO-NAS License.

🏆 Contributing

We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autodistill-yolonas-0.1.1.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

autodistill_yolonas-0.1.1-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file autodistill-yolonas-0.1.1.tar.gz.

File metadata

  • Download URL: autodistill-yolonas-0.1.1.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for autodistill-yolonas-0.1.1.tar.gz
Algorithm Hash digest
SHA256 0dafe33d83e2ea42016deb0e7add7bb0d6882a820dfce21209ccf0510448a41f
MD5 5c50bfdb5147f8220669768a3d9ad5cf
BLAKE2b-256 049176aa202475b36e3c142fa743d7ff9fc2a944a003bdac09d86485f9564076

See more details on using hashes here.

File details

Details for the file autodistill_yolonas-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for autodistill_yolonas-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 22535f03df17a065ef5069029c28d4ef7330ad8dc68d6513da99dc6f01f82ebb
MD5 7a2776195c5fd138261fbe77444719fc
BLAKE2b-256 24a27806099022dca3e833ba11ebd8f3c5050813b759b21d17e147290a07ea6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page