YOLO-NAS module for use with Autodistill
Project description
Autodistill YOLO-NAS Module
This repository contains the code supporting the YOLO-NAS target model for use with Autodistill.
YOLO-NAS is an object detection model developed by Deci AI.
You can use autodistill
to train a YOLO-NAS object detection model on a dataset of labelled images generated by the base models that autodistill
supports.
Read the full Autodistill documentation.
Read the YOLO-NAS Autodistill documentation.
Installation
To use the YOLOv5 target model, you will need to install the following dependency:
pip3 install autodistill-yolo-nas
Quickstart
from autodistill_yolo_nas import YOLONAS
target_model = YOLONAS("YOLOv5n.pt")
# train a model
# specify the directory where your annotations (in YOLO format) are stored
target_model.train("./context_images_labeled", epochs=20)
# run inference on the new model
pred = target_model.predict("./context_images_labeled/train/images/dog-7.jpg", confidence=0.01)
License
The YOLO-NAS model is licensed under the YOLO-NAS License.
🏆 Contributing
We love your input! Please see the core Autodistill contributing guide to get started. Thank you 🙏 to all our contributors!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file autodistill-yolonas-0.1.1.tar.gz
.
File metadata
- Download URL: autodistill-yolonas-0.1.1.tar.gz
- Upload date:
- Size: 5.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0dafe33d83e2ea42016deb0e7add7bb0d6882a820dfce21209ccf0510448a41f |
|
MD5 | 5c50bfdb5147f8220669768a3d9ad5cf |
|
BLAKE2b-256 | 049176aa202475b36e3c142fa743d7ff9fc2a944a003bdac09d86485f9564076 |
File details
Details for the file autodistill_yolonas-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: autodistill_yolonas-0.1.1-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22535f03df17a065ef5069029c28d4ef7330ad8dc68d6513da99dc6f01f82ebb |
|
MD5 | 7a2776195c5fd138261fbe77444719fc |
|
BLAKE2b-256 | 24a27806099022dca3e833ba11ebd8f3c5050813b759b21d17e147290a07ea6f |