Skip to main content

Classy non-linear optimisation

Project description

PyAutoFit

PyAutoFit is a Python-based probablistic programming language that allows complex model fitting techniques to be straightforwardly integrated into scientific modeling software. PyAutoFit specializes in:

  • Black box models with complex and expensive log likelihood functions.
  • Fitting many different model parametrizations to a data-set.
  • Modeling extremely large-datasets with a homogenous fitting procedure.
  • Automating complex model-fitting tasks via transdimensional model-fitting pipelines.

API Overview

To illustrate the PyAutoFit API, we'll use an illustrative toy model of fitting a one-dimensional Gaussian to noisy 1D data of a Gaussian's line profile. Here's an example of the data (blue) and the model we'll fit (orange):

.. image:: https://raw.githubusercontent.com/rhayes777/PyAutoFit/master/toy_model_fit.png :width: 400 :alt: Alternative text

We define our model, a 1D Gaussian, by writing a Python class using the format below.

.. code-block:: python

class Gaussian:

    def __init__(
        self,            # <- PyAutoFit recognises these
        centre = 0.0,    # <- constructor arguments are
        intensity = 0.1, # <- the model parameters of .
        sigma = 0.01,    # <- the Gaussian.
    ):
        self.centre = centre
        self.intensity = intensity
        self.sigma = sigma

"""
An instance of the Gaussian class will be available during model fitting.
This method will be used to fit the model to data and compute a likelihood.
"""

def line_from_xvalues(self, xvalues):

    transformed_xvalues = xvalues - self.centre

    return (self.intensity / (self.sigma * (2.0 * np.pi) ** 0.5)) * \
            np.exp(-0.5 * transformed_xvalues / self.sigma)

PyAutoFit recognises that this Gaussian may be treated as a model component whose parameters can be fitted for via a non-linear search like emcee <https://github.com/dfm/emcee>_..

To fit this Gaussian to the data we create an Analysis object, which gives PyAutoFit the data and a likelihood function describing how to fit the data with the model:

.. code-block:: python

class Analysis(af.Analysis):

    def __init__(self, data, noise_map):

        self.data = data
        self.noise_map = noise_map

    def log_likelihood_function(self, instance):

        """
        The 'instance' that comes into this method is an instance of the Gaussian class
        above, with the parameters set to (random) values chosen by the non-linear search.
        """

        print("Gaussian Instance:")
        print("Centre = ", instance.centre)
        print("Intensity = ", instance.intensity)
        print("Sigma = ", instance.sigma)

        """
        We fit the data with the Gaussian instance, using its
        "line_from_xvalues" function to create the model data.
        """

        xvalues = np.arange(self.data.shape[0])

        model_data = instance.line_from_xvalues(xvalues=xvalues)
        residual_map = self.data - model_data
        chi_squared_map = (residual_map / self.noise_map) ** 2.0
        log_likelihood = -0.5 * sum(chi_squared_map)

        return log_likelihood

We can now fit data to the model using a non-linear search of our choice.

.. code-block:: python

model = af.PriorModel(Gaussian)

analysis = a.Analysis(data=data, noise_map=noise_map)

emcee = af.Emcee(nwalkers=50, nsteps=2000)

result = emcee.fit(model=model, analysis=analysis)

The result object contains information on the model-fit, for example the parameter samples, best-fit model and marginalized probability density functions.

Getting Started

To get started checkout our readthedocs <https://pyautofit.readthedocs.io/>_, where you'll find our installation guide, a complete overview of PyAutoFit's features, examples scripts and tutorials and detailed API documentation.

Slack

We're building a PyAutoFit community on Slack, so you should contact us on our Slack channel <https://pyautofit.slack.com/>_ before getting started. Here, I give the latest updates on the software & can discuss how best to use PyAutoFit for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autofit-0.59.2.tar.gz (86.7 kB view details)

Uploaded Source

Built Distribution

autofit-0.59.2-py3-none-any.whl (118.2 kB view details)

Uploaded Python 3

File details

Details for the file autofit-0.59.2.tar.gz.

File metadata

  • Download URL: autofit-0.59.2.tar.gz
  • Upload date:
  • Size: 86.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autofit-0.59.2.tar.gz
Algorithm Hash digest
SHA256 a6626c5e9ab13b709af6bcc9e4e17272f17b7bde8d6163beb1c33084965c6564
MD5 9265d2381e8c273e0d08d3286b76933f
BLAKE2b-256 6d74c7752a1c166fa27f70e8084e59c6d01b2dc797476bfe5a6a509a08452710

See more details on using hashes here.

File details

Details for the file autofit-0.59.2-py3-none-any.whl.

File metadata

  • Download URL: autofit-0.59.2-py3-none-any.whl
  • Upload date:
  • Size: 118.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autofit-0.59.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5baf1c4db0aedcfa435fbbcf4468527c48b7d006152b889ba8b46d7c5acc635c
MD5 e2546719926a98168a1c433be65d2a33
BLAKE2b-256 0646603f0089dc5a26573fadd0937f628248af407da8c525044e0460d4dfa41d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page