Skip to main content

Automated Flyte workflows, powered by GPTs.

Project description

Autoflows

Automated Flyte Workflows using LLMs

The autoflows package allows you to run Flyte workflows that are powered by LLMs. These workflows use LLMs to determine which task to run in a suite of user-defined, trusted Flyte tasks.

Installation

pip install autoflows

Usage

First we can define some Flyte tasks as usual:

# example.py

from flytekit import task
from autoflows import autoflow


image_spec = ImageSpec(
    "auto-workflows",
    registry="ghcr.io/unionai-oss",
    requirements="requirements.txt",
    python_version="3.10",
)


@task(container_image=image_spec)
def add_numbers(x: float, y: float) -> FlyteFile: ...


@task(container_image=image_spec)
def concat_strings(strings: List[str]) -> FlyteFile: ...


@task(container_image=image_spec)
def train_classifier(data: List[dict], target_column: str) -> FlyteFile:
    ...

Then, in the same file, we define a FlyteRemote object that we want to use to run our autoflow.

# example.py

remote = FlyteRemote(
    config=Config(
        platform=PlatformConfig(
            endpoint="<my_endpoitn>",
            client_id="<my_client_id>",
        ),
    ),
    default_project="flytesnacks",
    default_domain="development",
)

Finally, we define the autoflow function:

# example.py

@autoflow(
    tasks=[add_numbers, concat_strings, train_classifier],
    model="gpt-3.5-turbo-1106",
    remote=remote,
    openai_secret_group="<OPENAI_API_SECRET_GROUP>",
    openai_secret_key="<OPENAI_API_SECRET_KEY>",
    client_secret_group="<CLIENT_SECRET_GROUP>",
    client_secret_key="<CLIENT_SECRET_KEY>",
    container_image=image_spec,
)
async def main(prompt: str, inputs: dict) -> FlyteFile:
    """You are a helpful bot that picks functions based on a prompt and a set of inputs.

    What tool should I use for completing the task '{prompt}' using the following inputs?
    {inputs}
    """

Running on Flyte or Union

Then, you can register the workflow along with all of the tasks:

pyflyte --config config.yaml register example.py

Where config.yaml is the Flyte configuration file pointing to your Flyte or Union cluster.

Finally, you can run the workflow, and let the autoflow function decide which task to run based on the prompt and inputs. For example, to add two numbers, you would do:

pyflyte --config config.yaml run example.py main \
    --prompt "Add these two numbers" \
    --inputs '{"x": 1, "y": 2}'

To concatenate two strings, you would do:

pyflyte run \
    test_auto_workflow.py auto_wf \
    --prompt "Combine these two strings together" \
    --inputs '{"strings": ["hello", " ", "world"]}'

And to train a classifier based on data:

pyflyte run \
    test_auto_workflow.py auto_wf \
    --prompt "Train a classifier on this small dataset" \
    --inputs "{\"target_column\": \"y\", \"training_data\": $(cat data.json)}"

Where data.json contains json objects that looks something like:

[
    {"x": 5, "y": 10},
    {"x": 3, "y": 5},
    {"x": 10, "y": 19},
]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autoflows-0.0.1.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

autoflows-0.0.1-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file autoflows-0.0.1.tar.gz.

File metadata

  • Download URL: autoflows-0.0.1.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for autoflows-0.0.1.tar.gz
Algorithm Hash digest
SHA256 253c149e08358d44a912c23c8c72c5b7bc257e8823383bb713b9de04d52d9111
MD5 ec7cd747d13833542a72d9694ed3efc3
BLAKE2b-256 12fa4349928c9d5fc8c19004fe19cf78a2bc524886a865dcce8e8ac4e0e7e07d

See more details on using hashes here.

File details

Details for the file autoflows-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: autoflows-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for autoflows-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 994c450749d98d98ac456e72cd645fd99e672bdb8f43995bc4a0d936f5535ec6
MD5 f0343b8a52d9e005833b85a784ec2c83
BLAKE2b-256 c62f9ff7b662adc2c54e47d1bd4e68becfb01eaab894bf6251924c71ce5424f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page