Skip to main content

Astro modelling

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

# In this example, we'll fit an image of a single galaxy .
dataset_path = '{}/../data/'.format(os.path.dirname(os.path.realpath(__file__)))

galaxy_name = 'example_galaxy'

# Use the relative path to the dataset to load the imaging data.
imaging = ag.Imaging.from_fits(
    image_path=dataset_path + galaxy_name + '/image.fits',
    psf_path=dataset_path+galaxy_name+'/psf.fits',
    noise_map_path=dataset_path+galaxy_name+'/noise_map.fits',
    pixel_scales=0.1)

# Create a mask for the data, which we setup as a 3.0" circle.
mask = ag.Mask.circular(shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=3.0)

# We model our galaxy using a light profile (an elliptical Sersic).
light_profile = ag.lp.EllipticalSersic

# To setup our model galaxy, we use the GalaxyModel class, which represents a galaxy whose parameters
# are free & fitted for by PyAutoGalaxy. The galaxy is also assigned a redshift.
galaxy_model = ag.GalaxyModel(redshift=1.0, light=light_profile)

# To perform the analysis we set up a phase, which takes our galaxy model & fits its parameters using a non-linear
# search (in this case, MultiNest).
phase = ag.PhaseImaging(
    galaxies=dict(galaxy=galaxy_model),
    phase_name='example/phase_example',
    search=af.DynestyStatic()
    )

# We pass the imaging data and mask to the phase, thereby fitting it with the galaxy model & plot the resulting fit.
result = phase.run(data=imaging, mask=mask)
ag.plot.FitImaging.subplot_fit_imaging(fit=result.max_log_likelihood_fit)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-0.10.13.tar.gz (161.8 kB view details)

Uploaded Source

Built Distribution

autogalaxy-0.10.13-py3-none-any.whl (241.0 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-0.10.13.tar.gz.

File metadata

  • Download URL: autogalaxy-0.10.13.tar.gz
  • Upload date:
  • Size: 161.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.10.13.tar.gz
Algorithm Hash digest
SHA256 0ee386809268c4a3199ce434cb3aefc0776da5e8d6efe4f2e890741893de5654
MD5 21aea017ee5e1618a5e6b241b16f5a5f
BLAKE2b-256 7556e4ebb02f5db411febbca0d6daa979956fd4e8a7d7a41923a760d845566a3

See more details on using hashes here.

File details

Details for the file autogalaxy-0.10.13-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-0.10.13-py3-none-any.whl
  • Upload date:
  • Size: 241.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.10.13-py3-none-any.whl
Algorithm Hash digest
SHA256 7fb2c0df1717026b682129356eeaaa7d2bba75477cfce3fe9eff6bc2b5e49eab
MD5 6c93ef0b07e090fc78215cfdc594d157
BLAKE2b-256 e1889a8712ea715574807c61ef22f9c04f89d2a6bec592013d5ed71520e2c685

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page