Skip to main content

Astro modelling

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

# In this example, we'll fit an image of a single galaxy .
dataset_path = '{}/../data/'.format(os.path.dirname(os.path.realpath(__file__)))

galaxy_name = 'example_galaxy'

# Use the relative path to the dataset to load the imaging data.
imaging = ag.Imaging.from_fits(
    image_path=dataset_path + galaxy_name + '/image.fits',
    psf_path=dataset_path+galaxy_name+'/psf.fits',
    noise_map_path=dataset_path+galaxy_name+'/noise_map.fits',
    pixel_scales=0.1)

# Create a mask for the data, which we setup as a 3.0" circle.
mask = ag.Mask.circular(shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=3.0)

# We model our galaxy using a light profile (an elliptical Sersic).
light_profile = ag.lp.EllipticalSersic

# To setup our model galaxy, we use the GalaxyModel class, which represents a galaxy whose parameters
# are free & fitted for by PyAutoGalaxy. The galaxy is also assigned a redshift.
galaxy_model = ag.GalaxyModel(redshift=1.0, light=light_profile)

# To perform the analysis we set up a phase, which takes our galaxy model & fits its parameters using a non-linear
# search (in this case, MultiNest).
phase = ag.PhaseImaging(
    galaxies=dict(galaxy=galaxy_model),
    phase_name='example/phase_example',
    search=af.DynestyStatic()
    )

# We pass the imaging data and mask to the phase, thereby fitting it with the galaxy model & plot the resulting fit.
result = phase.run(data=imaging, mask=mask)
ag.plot.FitImaging.subplot_fit_imaging(fit=result.max_log_likelihood_fit)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-0.10.3.tar.gz (160.2 kB view details)

Uploaded Source

Built Distribution

autogalaxy-0.10.3-py3-none-any.whl (239.9 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-0.10.3.tar.gz.

File metadata

  • Download URL: autogalaxy-0.10.3.tar.gz
  • Upload date:
  • Size: 160.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.10.3.tar.gz
Algorithm Hash digest
SHA256 3a0ffc749e051a233be7e7d34d0567040716f3dc5a952a729095e9819b710aa8
MD5 a1523c17d11604c8370ceb6c8691340c
BLAKE2b-256 14d95dfb1651f713645026581a4e6fb0d4deb5e25d968379e37e820f789df12b

See more details on using hashes here.

File details

Details for the file autogalaxy-0.10.3-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-0.10.3-py3-none-any.whl
  • Upload date:
  • Size: 239.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.10.3-py3-none-any.whl
Algorithm Hash digest
SHA256 952dc6d2b08923e17b289210263c6f73791082a64e34ee7d561f5f97d16ef246
MD5 28170a2c1a3348a57c19b0d4501cd2de
BLAKE2b-256 c8244dd34777f583a02071173ceb0bbdea19f712737039b701700d36098c2a67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page