Skip to main content

Astro modelling

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

# In this example, we'll fit an image of a single galaxy .
dataset_path = '{}/../data/'.format(os.path.dirname(os.path.realpath(__file__)))

galaxy_name = 'example_galaxy'

# Use the relative path to the dataset to load the imaging data.
imaging = ag.Imaging.from_fits(
    image_path=dataset_path + galaxy_name + '/image.fits',
    psf_path=dataset_path+galaxy_name+'/psf.fits',
    noise_map_path=dataset_path+galaxy_name+'/noise_map.fits',
    pixel_scales=0.1)

# Create a mask for the data, which we setup as a 3.0" circle.
mask = ag.Mask.circular(shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=3.0)

# We model our galaxy using a light profile (an elliptical Sersic).
light_profile = ag.lp.EllipticalSersic

# To setup our model galaxy, we use the GalaxyModel class, which represents a galaxy whose parameters
# are free & fitted for by PyAutoGalaxy. The galaxy is also assigned a redshift.
galaxy_model = ag.GalaxyModel(redshift=1.0, light=light_profile)

# To perform the analysis we set up a phase, which takes our galaxy model & fits its parameters using a non-linear
# search (in this case, MultiNest).
phase = ag.PhaseImaging(
    galaxies=dict(galaxy=galaxy_model),
    phase_name='example/phase_example',
    search=af.DynestyStatic()
    )

# We pass the imaging data and mask to the phase, thereby fitting it with the galaxy model & plot the resulting fit.
result = phase.run(data=imaging, mask=mask)
ag.plot.FitImaging.subplot_fit_imaging(fit=result.max_log_likelihood_fit)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-0.12.3.tar.gz (162.1 kB view details)

Uploaded Source

Built Distribution

autogalaxy-0.12.3-py3-none-any.whl (241.2 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-0.12.3.tar.gz.

File metadata

  • Download URL: autogalaxy-0.12.3.tar.gz
  • Upload date:
  • Size: 162.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.12.3.tar.gz
Algorithm Hash digest
SHA256 a6ad90f33a79adaee301a1f11dea189ca44e2ff989a566c6356364f3870b24e5
MD5 a7daa7705cb547eae894af40d160e2be
BLAKE2b-256 9b1bff75a00f184fca9618f94941b833142e700675584a36c1433bb8ff1bfd01

See more details on using hashes here.

File details

Details for the file autogalaxy-0.12.3-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-0.12.3-py3-none-any.whl
  • Upload date:
  • Size: 241.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.12.3-py3-none-any.whl
Algorithm Hash digest
SHA256 957d3e6f17b9473b007c54fc26c746214caef106fda3af18065f0140d32647a9
MD5 3519e1e090afc3620d9d1a7a93b1750e
BLAKE2b-256 1d688b8d695f8359d9b14f753a478ce8d183c7590dbe279e346168b6c7884315

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page