Skip to main content

Astro modelling

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

# In this example, we'll fit an image of a single galaxy .
dataset_path = '{}/../data/'.format(os.path.dirname(os.path.realpath(__file__)))

galaxy_name = 'example_galaxy'

# Use the relative path to the dataset to load the imaging data.
imaging = ag.Imaging.from_fits(
    image_path=dataset_path + galaxy_name + '/image.fits',
    psf_path=dataset_path+galaxy_name+'/psf.fits',
    noise_map_path=dataset_path+galaxy_name+'/noise_map.fits',
    pixel_scales=0.1)

# Create a mask for the data, which we setup as a 3.0" circle.
mask = ag.Mask2D.circular(shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=3.0)

# We model our galaxy using a light profile (an elliptical Sersic).
light_profile = ag.lp.EllipticalSersic

# To setup our model galaxy, we use the GalaxyModel class, which represents a galaxy whose parameters
# are free & fitted for by PyAutoGalaxy. The galaxy is also assigned a redshift.
galaxy_model = ag.GalaxyModel(redshift=1.0, light=light_profile)

# To perform the analysis we set up a phase, which takes our galaxy model & fits its parameters using a non-linear
# search (in this case, MultiNest).
phase = ag.PhaseImaging(
    galaxies=dict(galaxy=galaxy_model),
    name='example/phase_example',
    search=af.DynestyStatic()
    )

# We pass the imaging ``data`` and mask to the phase, thereby fitting it with the galaxy model & plot the resulting fit.
result = phase.run(data=imaging, mask=mask)
ag.plot.FitImaging.subplot_fit_imaging(fit=result.max_log_likelihood_fit)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-0.15.8.tar.gz (173.4 kB view details)

Uploaded Source

Built Distribution

autogalaxy-0.15.8-py3-none-any.whl (253.4 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-0.15.8.tar.gz.

File metadata

  • Download URL: autogalaxy-0.15.8.tar.gz
  • Upload date:
  • Size: 173.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.15.8.tar.gz
Algorithm Hash digest
SHA256 dce183e80b839c1a905ad4e7b6c9e26adfa617701132c34cde949aefe3a3290f
MD5 139d6812171f6f7533609c9ac63ba4a8
BLAKE2b-256 558fa6d3dc5e8af5c67985b8fa78e670a65ccb6cbe26dd9835b4e804df30d529

See more details on using hashes here.

File details

Details for the file autogalaxy-0.15.8-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-0.15.8-py3-none-any.whl
  • Upload date:
  • Size: 253.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.9

File hashes

Hashes for autogalaxy-0.15.8-py3-none-any.whl
Algorithm Hash digest
SHA256 953a2a294f51999fecc8a5f95de6ad84c696bc6443da2a342c73a983c825a378
MD5 577c98aef41833fe078f21c488e59784
BLAKE2b-256 1823de453e082038a9b2df46f89468d04a26e7ffb852bf900c0148a19de87262

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page