Skip to main content

Astro modelling

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

# In this example, we'll fit an image of a single galaxy .
dataset_path = '{}/../data/'.format(os.path.dirname(os.path.realpath(__file__)))

galaxy_name = 'example_galaxy'

# Use the relative path to the dataset to load the imaging data.
imaging = ag.Imaging.from_fits(
    image_path=dataset_path + galaxy_name + '/image.fits',
    psf_path=dataset_path+galaxy_name+'/psf.fits',
    noise_map_path=dataset_path+galaxy_name+'/noise_map.fits',
    pixel_scales=0.1)

# Create a mask for the data, which we setup as a 3.0" circle.
mask = ag.Mask2D.circular(shape_2d=imaging.shape_2d, pixel_scales=imaging.pixel_scales, radius=3.0)

# We model our galaxy using a light profile (an elliptical Sersic).
light_profile = ag.lp.EllipticalSersic

# To setup our model galaxy, we use the GalaxyModel class, which represents a galaxy whose parameters
# are free & fitted for by PyAutoGalaxy. The galaxy is also assigned a redshift.
galaxy_model = ag.GalaxyModel(redshift=1.0, light=light_profile)

# To perform the analysis we set up a phase, which takes our galaxy model & fits its parameters using a non-linear
# search (in this case, MultiNest).
phase = ag.PhaseImaging(
    galaxies=dict(galaxy=galaxy_model),
    name='example/phase_example',
    search=af.DynestyStatic()
    )

# We pass the imaging ``data`` and mask to the phase, thereby fitting it with the galaxy model & plot the resulting fit.
result = phase.run(data=imaging, mask=mask)
ag.plot.FitImaging.subplot_fit_imaging(fit=result.max_log_likelihood_fit)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-0.16.7.tar.gz (715.2 kB view details)

Uploaded Source

Built Distribution

autogalaxy-0.16.7-py3-none-any.whl (970.0 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-0.16.7.tar.gz.

File metadata

  • Download URL: autogalaxy-0.16.7.tar.gz
  • Upload date:
  • Size: 715.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-0.16.7.tar.gz
Algorithm Hash digest
SHA256 43bf2795788af7914aedde710715ce0c03e8405e95e66e831dd62657fa4f1456
MD5 17be3379a55b36da3d81f826bcd92b3f
BLAKE2b-256 8c234e80ea56ef5a37c2cf6b4c68ad7dfb4362d1edcc0539a98d468ac25b93ae

See more details on using hashes here.

File details

Details for the file autogalaxy-0.16.7-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-0.16.7-py3-none-any.whl
  • Upload date:
  • Size: 970.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-0.16.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a9c7cbe3f5ea0fd4f1c048a36f6e693ad2115a2bbff5876b32a9998a26e66cc3
MD5 438cc0b2d1e8b8acec3663cd858ba795
BLAKE2b-256 52fe80b67b157c2761fce90b0daf852ade33c03384d30d58150e6d8b7b7264f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page