Skip to main content

Open Source Galaxy Model-Fitting

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

"""
Load Imaging data of the strong lens from the dataset folder of the workspace.
"""
imaging = ag.Imaging.from_fits(
    image_path="/path/to/dataset/image.fits",
    noise_map_path="/path/to/dataset/noise_map.fits",
    psf_path="/path/to/dataset/psf.fits",
    pixel_scales=0.1,
)

"""
Create a mask for the data, which we setup as a 3.0" circle.
"""
mask = ag.Mask2D.circular(
    shape_native=imaging.shape_native, pixel_scales=imaging.pixel_scales, radius=3.0
)

"""
We model the galaxy using an EllSersic LightProfile.
"""
light_profile = ag.lp.EllSersic

"""
We next setup this profile as model components whose parameters are free & fitted for
by setting up a Galaxy as a Model.
"""
galaxy_model = af.Model(ag.Galaxy, redshift=1.0, light=light_profile)
model = af.Collection(galaxy=_galaxy_model)

"""
We define the non-linear search used to fit the model to the data (in this case, Dynesty).
"""
search = af.DynestyStatic(name="search[example]", nlive=50)

"""
We next set up the `Analysis`, which contains the `log likelihood function` that the
non-linear search calls to fit the lens model to the data.
"""
analysis = ag.AnalysisImaging(dataset=masked_imaging)

"""
To perform the model-fit we pass the model and analysis to the search's fit method. This will
output results (e.g., dynesty samples, model parameters, visualization) to hard-disk.
"""
result = search.fit(model=model, analysis=analysis)

"""
The results contain information on the fit, for example the maximum likelihood
model from the Dynesty parameter space search.
"""
print(result.samples.max_log_likelihood_instance)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-2021.6.2.1.tar.gz (170.3 kB view details)

Uploaded Source

Built Distribution

autogalaxy-2021.6.2.1-py3-none-any.whl (236.9 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-2021.6.2.1.tar.gz.

File metadata

  • Download URL: autogalaxy-2021.6.2.1.tar.gz
  • Upload date:
  • Size: 170.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-2021.6.2.1.tar.gz
Algorithm Hash digest
SHA256 aa233be217cc6589f6117cbfdd3b2095e98d7b314ac558adc770ae1a10b3954b
MD5 55309a0608c82c1ff50fffa69e6d9aab
BLAKE2b-256 f0502839029e33c7dbb837316bd5a298bb48182dcbfa4c523849a6511de9d146

See more details on using hashes here.

File details

Details for the file autogalaxy-2021.6.2.1-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-2021.6.2.1-py3-none-any.whl
  • Upload date:
  • Size: 236.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-2021.6.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e368291695b7b259bf1953c40c59da8e39a06c09c9baeab4e48d5e2d192baab3
MD5 82fdfd35180c45700bf5c5f8e605b72c
BLAKE2b-256 83bf72c4c013ae89179a4ef5c74cf691acf70b07099bc73c5fd7347c79af5484

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page