Skip to main content

Open Source Galaxy Model-Fitting

Project description

PyAutoGalaxy

The study of a galaxy's light, structure and dynamics is at the heart of modern day Astrophysical research. PyAutoGalaxy makes it simple to model galaxies, like this one:

Missing for now :(

Example

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy's light.

.. code-block:: python

import autofit as af
import autogalaxy as ag

import os

"""
Load Imaging data of the strong lens from the dataset folder of the workspace.
"""
imaging = ag.Imaging.from_fits(
    image_path="/path/to/dataset/image.fits",
    noise_map_path="/path/to/dataset/noise_map.fits",
    psf_path="/path/to/dataset/psf.fits",
    pixel_scales=0.1,
)

"""
Create a mask for the data, which we setup as a 3.0" circle.
"""
mask = ag.Mask2D.circular(
    shape_native=imaging.shape_native, pixel_scales=imaging.pixel_scales, radius=3.0
)

"""
We model the galaxy using an EllSersic LightProfile.
"""
light_profile = ag.lp.EllSersic

"""
We next setup this profile as model components whose parameters are free & fitted for
by setting up a Galaxy as a Model.
"""
galaxy_model = af.Model(ag.Galaxy, redshift=1.0, light=light_profile)
model = af.Collection(galaxy=_galaxy_model)

"""
We define the non-linear search used to fit the model to the data (in this case, Dynesty).
"""
search = af.DynestyStatic(name="search[example]", nlive=50)

"""
We next set up the `Analysis`, which contains the `log likelihood function` that the
non-linear search calls to fit the lens model to the data.
"""
analysis = ag.AnalysisImaging(dataset=masked_imaging)

"""
To perform the model-fit we pass the model and analysis to the search's fit method. This will
output results (e.g., dynesty samples, model parameters, visualization) to hard-disk.
"""
result = search.fit(model=model, analysis=analysis)

"""
The results contain information on the fit, for example the maximum likelihood
model from the Dynesty parameter space search.
"""
print(result.samples.max_log_likelihood_instance)

Getting Started

Please contact us via email or on our SLACK channel if you are interested in using PyAutoGalaxy, as project is still a work in progress whilst we focus n PyAutoFit and PyAutoLens.

Slack

We're building a PyAutoGalaxy community on Slack, so you should contact us on our Slack channel <https://pyautogalaxy.slack.com/>_ before getting started. Here, I will give you the latest updates on the software & discuss how best to use PyAutoGalaxy for your science case.

Unfortunately, Slack is invitation-only, so first send me an email <https://github.com/Jammy2211>_ requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-2022.2.14.1.tar.gz (246.4 kB view details)

Uploaded Source

Built Distribution

autogalaxy-2022.2.14.1-py3-none-any.whl (295.3 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-2022.2.14.1.tar.gz.

File metadata

  • Download URL: autogalaxy-2022.2.14.1.tar.gz
  • Upload date:
  • Size: 246.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-2022.2.14.1.tar.gz
Algorithm Hash digest
SHA256 738f731287023f0e32d8e8cdbe6689586100ba48660b3e6e9a6843364074750d
MD5 3c3bfb51eb0d0e5c57a94f38b35e24e2
BLAKE2b-256 2c63af0380a2a8e56c8e9a6358dcf486256b0277802bbfdf4bd978ebff154b57

See more details on using hashes here.

File details

Details for the file autogalaxy-2022.2.14.1-py3-none-any.whl.

File metadata

  • Download URL: autogalaxy-2022.2.14.1-py3-none-any.whl
  • Upload date:
  • Size: 295.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.5

File hashes

Hashes for autogalaxy-2022.2.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ce4516c7358975988dd4f1c14e332450022dd5e8e024b85318a68bcdb4ccb227
MD5 f0d14badff66b516e897eaecefbae29d
BLAKE2b-256 60c00cab28267eb8f41e24c10ca113f7cdb4c4780959e67a39df7dd357842db1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page