Skip to main content

Open-Source Multi Wavelength Galaxy Structure & Morphology

Project description

https://mybinder.org/badge_logo.svg Documentation Status https://github.com/Jammy2211/PyAutoGalaxy/actions/workflows/main.yml/badge.svg https://github.com/Jammy2211/PyAutoBuild/actions/workflows/release.yml/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg https://joss.theoj.org/papers/10.21105/joss.04475/status.svg

Installation Guide | readthedocs | Introduction on Binder | HowToGalaxy

PyAutoGalaxy is software for analysing the morphologies and structures of galaxies:

https://github.com/Jammy2211/PyAutoGalaxy/blob/main/paper/hstcombined.png?raw=true

PyAutoGalaxy also fits interferometer data from observatories such as ALMA:

https://github.com/Jammy2211/PyAutoGalaxy/blob/main/paper/almacombined.png?raw=true

Getting Started

The following links are useful for new starters:

Core Aims

PyAutoGalaxy has three core aims:

  • Model Complexity: Fitting complex galaxy morphology models (e.g. Multi Gaussian Expansion, Shapelets, Ellipse Fitting, Irregular Meshes) that go beyond just simple Sersic fitting (which is supported too!).

  • Data Variety: Support for many data types (e.g. CCD imaging, interferometry, multi-band imaging) which can be fitted independently or simultaneously.

  • Big Data: Scaling automated analysis to extremely large datasets, using tools like an SQL database to build a scalable scientific workflow.

A complete overview of the software’s aims is provided in our Journal of Open Source Software paper.

API Overview

Galaxy morphology calculations are performed in PyAutoGalaaxy by building a Plane object from LightProfile and Galaxy objects. Below, we create a simple galaxy system where a redshift 0.5 Galaxy with an Sersic LightProfile representing a bulge and an Exponential LightProfile representing a disk.

import autogalaxy as ag
import autogalaxy.plot as aplt

"""
To describe the galaxy emission two-dimensional grids of (y,x) Cartesian
coordinates are used.
"""
grid = ag.Grid2D.uniform(
    shape_native=(50, 50),
    pixel_scales=0.05,  # <- Conversion from pixel units to arc-seconds.
)

"""
The galaxy has an elliptical sersic light profile representing its bulge.
"""
bulge=ag.lp.Sersic(
    centre=(0.0, 0.0),
    ell_comps=ag.convert.ell_comps_from(axis_ratio=0.9, angle=45.0),
    intensity=1.0,
    effective_radius=0.6,
    sersic_index=3.0,
)

"""
The galaxy also has an elliptical exponential disk
"""
disk = ag.lp.Exponential(
    centre=(0.0, 0.0),
    ell_comps=ag.convert.ell_comps_from(axis_ratio=0.7, angle=30.0),
    intensity=0.5,
    effective_radius=1.6,
)

"""
We combine the above light profiles to compose a galaxy at redshift 1.0.
"""
galaxy = ag.Galaxy(redshift=1.0, bulge=bulge, disk=disk)

"""
We create a Plane, which in this example has just one galaxy but can
be extended for datasets with many galaxies.
"""
plane = ag.Plane(
    galaxies=[galaxy],
)

"""
We can use the Grid2D and Plane to perform many calculations, for example
plotting the image of the galaxyed source.
"""
plane_plotter = aplt.GalaxiesPlotter(plane=plane, grid=grid)
plane_plotter.figures_2d(image=True)

With PyAutoGalaxy, you can begin modeling a galaxy in just a couple of minutes. The example below demonstrates a simple analysis which fits a galaxy’s light.

import autofit as af
import autogalaxy as ag

import os

"""
Load Imaging data of the strong galaxy from the dataset folder of the workspace.
"""
dataset = ag.Imaging.from_fits(
    data_path="/path/to/dataset/image.fits",
    noise_map_path="/path/to/dataset/noise_map.fits",
    psf_path="/path/to/dataset/psf.fits",
    pixel_scales=0.1,
)

"""
Create a mask for the data, which we setup as a 3.0" circle.
"""
mask = ag.Mask2D.circular(
    shape_native=dataset.shape_native,
    pixel_scales=dataset.pixel_scales,
    radius=3.0
)

"""
We model the galaxy using an Sersic LightProfile.
"""
light_profile = ag.lp.Sersic

"""
We next setup this profile as model components whose parameters are free & fitted for
by setting up a Galaxy as a Model.
"""
galaxy_model = af.Model(ag.Galaxy, redshift=1.0, light=light_profile)
model = af.Collection(galaxy=galaxy_model)

"""
We define the non-linear search used to fit the model to the data (in this case, Dynesty).
"""
search = af.Nautilus(name="search[example]", n_live=50)

"""
We next set up the `Analysis`, which contains the `log likelihood function` that the
non-linear search calls to fit the galaxy model to the data.
"""
analysis = ag.AnalysisImaging(dataset=masked_dataset)

"""
To perform the model-fit we pass the model and analysis to the search's fit method. This will
output results (e.g., dynesty samples, model parameters, visualization) to hard-disk.
"""
result = search.fit(model=model, analysis=analysis)

"""
The results contain information on the fit, for example the maximum likelihood
model from the Dynesty parameter space search.
"""
print(result.samples.max_log_likelihood())

Support

Support for installation issues, help with galaxy modeling and using PyAutoGalaxy is available by raising an issue on the GitHub issues page.

We also offer support on the PyAutoGalaxy Slack channel, where we also provide the latest updates on PyAutoGalaxy. Slack is invitation-only, so if you’d like to join send an email requesting an invite.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogalaxy-2024.9.21.1.tar.gz (5.4 MB view details)

Uploaded Source

Built Distribution

autogalaxy-2024.9.21.1-py3-none-any.whl (351.9 kB view details)

Uploaded Python 3

File details

Details for the file autogalaxy-2024.9.21.1.tar.gz.

File metadata

  • Download URL: autogalaxy-2024.9.21.1.tar.gz
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for autogalaxy-2024.9.21.1.tar.gz
Algorithm Hash digest
SHA256 9e688ac16553e1f09f23f64f94cc119263eb0309a5869a7dff3c05cf83f4925d
MD5 7232830e2ddbe32eed35f93ed26af173
BLAKE2b-256 cdd36ac5c1bab77193fc8f600bc664d42430e133c976fb93064ced0879ad0bf9

See more details on using hashes here.

File details

Details for the file autogalaxy-2024.9.21.1-py3-none-any.whl.

File metadata

File hashes

Hashes for autogalaxy-2024.9.21.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f7562c20b4866ae8aa133482067bf1cd77cc694f95698bb4a4217a11c52cfe1f
MD5 73b2a3f2dde6e7478a5b2f7f7b226c32
BLAKE2b-256 f2d755729682c6389164f58c00337e0d55e1e37f3efa53b6d9ce226fdd74fa9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page