Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230126.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230126-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230126.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230126.tar.gz
Algorithm Hash digest
SHA256 a8e19d58c23067a03d52631045d66187aa79b5081759e315d2c4e0fbf8d7a83c
MD5 96ddf36cb147779950ec2e126a0b84b8
BLAKE2b-256 94f16c11106bf6743ae368bf65d487784db35b8ef539d6fe15698501b3d0013e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230126-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230126-py3-none-any.whl
Algorithm Hash digest
SHA256 f3074caf10287f7b27b058661e0ab1ee115f525a0a6977fef9c4796e67eb16ca
MD5 c0bc4e79a2931cccd9cf800a45f8aa2f
BLAKE2b-256 b4c5de9e2e927574f121fba79f9b5f05854217902006742de5271cd6430fbc5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page