Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230127.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230127-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230127.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230127.tar.gz
Algorithm Hash digest
SHA256 3ed1ffbcfb5b6a7ebbdd09f95e280992e7d234555240a86a8d9c1f394d8808df
MD5 fe62fcef8fd78abf41fba35ee0b2ed80
BLAKE2b-256 76914721d00e64ce32ce1bc69196831d7ee8b61636e4601d05d527fc49696543

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230127-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230127-py3-none-any.whl
Algorithm Hash digest
SHA256 a9579a2bdc1a20282be8fa346b6af560e3ca63f52b20456a171ce0a81d840c7f
MD5 f6726c039579ea35f74a14c0b2474aa0
BLAKE2b-256 3887cc94242dc6c486d2e1dbe8898ad6eb8c1b4403760e162cd6c71730ea56a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page