Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230128.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230128-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230128.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230128.tar.gz
Algorithm Hash digest
SHA256 2ed300194b140f05e1a5842ef2eaf0a4c8cab34135046d69a15fd4a1de7d6230
MD5 dc9d1458052a1922a084af094e58c0ef
BLAKE2b-256 35a00b3b73a114e288344573c336761335d9e5efc1889326c498b707e9c9abdb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230128-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230128-py3-none-any.whl
Algorithm Hash digest
SHA256 7f25fb7ba88659898a4365db7e872f8a659dc04ac7c4b7465d3d1fe589e4563b
MD5 99548630329f9bd6b8d4fd62c3765eca
BLAKE2b-256 f2522060ac22e0242af804527cd0ef900a31b83447884d1984bcc09c4e685383

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page