Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230129.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230129-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230129.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230129.tar.gz
Algorithm Hash digest
SHA256 d88062569675c4c64834eda578ab1db13abb101ac2da1c9552a235974bf62afe
MD5 0e56d363a882025a59db6f7dfc7d0787
BLAKE2b-256 9aec67dd0eb01dc09d8a4cbc26d96673f44ac6321ae1ea176db78c1720ee7ad4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230129-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230129-py3-none-any.whl
Algorithm Hash digest
SHA256 c27495c2e95e0b035e13825695a5ecbd02be472ad9aaf467cddb0b4d4fd86faf
MD5 f50ed0b4fff30969b699a7bdf23a1f8e
BLAKE2b-256 cb1edf4d2891c04ff8533502cfa924cc91c5675bed4a0ab45dd94fd0838fb1c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page