Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230130.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230130-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230130.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230130.tar.gz
Algorithm Hash digest
SHA256 91a2301cb64159b289d9fd56517b6058aaee5a0ee9a8c371c9f923b94b87487c
MD5 3d49c823cb47645ce9a16312ffa5ad2b
BLAKE2b-256 a75f7e3bfb58f2df2a4986f81745abb9f53a72854bbcaff229a12ed236c2c528

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230130-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230130-py3-none-any.whl
Algorithm Hash digest
SHA256 8fd50368c8eac54c15fb5351afff3bf7e6564900180ec50e0729f89bcdc23f67
MD5 8922afd2b0fb8280ee2b345ccccdc9b3
BLAKE2b-256 251fd8b2f83ad57073220770c8d895a41b99fb47617da4bc2fc19723362b0cda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page