Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230131.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230131-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230131.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230131.tar.gz
Algorithm Hash digest
SHA256 f78443bbcdb9df11396d9ed1c417c7de8ffedbd06777edb1a5c9ecfbcb5cad8a
MD5 8327f0dac89202394ada52ff7f8af374
BLAKE2b-256 9bb5f5e087845e8988be4131c19fd56ec0852dce47c00048a5bc81fa4ea9ac26

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230131-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230131-py3-none-any.whl
Algorithm Hash digest
SHA256 f019d9c38e539ae0fc5106d560700aef316132ebc0cb679ee60bfc43aee11ab5
MD5 33729110159ce236a618cf0303b91f3e
BLAKE2b-256 cb0a5b752577af1fa9082c042f3137faf1765a7a622796576bdb35dfcbbf4ddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page