Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230201.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230201-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230201.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230201.tar.gz
Algorithm Hash digest
SHA256 2fa0b275c410684f6972e3f839f8cae3d840f11c5ad29873597307e64b54310f
MD5 8e7ec01ce589ec0fbe0caf6e9e8bbf19
BLAKE2b-256 74264930bb25d43be6ed2eed6ad824decf3c9058e50de0019d87163bda14c605

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230201-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230201-py3-none-any.whl
Algorithm Hash digest
SHA256 1815ab0b8ac900d4c89bc11fc121cd1ab765d0cbe566587f6e2ebf5d9de753ea
MD5 df5cda2207594cee73f3235a280030fd
BLAKE2b-256 3b32db40dd727242b1d936bbf13168efccc2593f3fc10e0a01b5665805e7baec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page