Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230202.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230202-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230202.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230202.tar.gz
Algorithm Hash digest
SHA256 ddf0b84216a831198b6382b08677efdf84eecdbf2e6bb2170656206857f6cbf7
MD5 063461185e99c3ea39955714f0eff7c6
BLAKE2b-256 e16aaeb6b338ce19bd12c374b9c0073ff5bf9d2348eeb65f92c2b35392ee499d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230202-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230202-py3-none-any.whl
Algorithm Hash digest
SHA256 5ec54f41cb51c1db27b07d27390dd8eaf0f93f125c9071a0a8d38bc935bc82f5
MD5 cbbe0a1fd5e93aac718dac674a8c33a3
BLAKE2b-256 339744b74643cec8dd785aab0d4fe9e1540dd9f46937572599f384981921ece5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page