Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230203.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230203-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230203.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230203.tar.gz
Algorithm Hash digest
SHA256 e467cb0b1ba6a9d9f3a27ab8e6115c5eaa05b5d3f1c5b35c792a29bc18faf72e
MD5 8e2bd9b0aadd3fad7777508f5b8c360c
BLAKE2b-256 63858f6c367b33e47873ee0b9a262cada9fff0f197da27161c3f4b5e363f90a5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230203-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230203-py3-none-any.whl
Algorithm Hash digest
SHA256 abbf7b6857bc5b7b4a28e51abe1d07763f5bc6694b7c0d3b4030c37d3847b2c7
MD5 b7adccc9a6f32a831ab25c640a9e0bf7
BLAKE2b-256 d0326abb64ee241c50a14e925edee5b3bf508daa7583fe7489e84c330696997e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page