Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230204.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230204-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230204.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230204.tar.gz
Algorithm Hash digest
SHA256 fc0f5e2c755bd1a7374b238f42b77981a70f511e6a8be00adc8419a8389e2a54
MD5 e354fff86dbeaa6edc019ee123d702a4
BLAKE2b-256 b1f92692763d51eb450965817fd4611ea52721f7d3c30b4d45c24b2330faa090

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230204-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230204-py3-none-any.whl
Algorithm Hash digest
SHA256 a6b49faa14840efa3242633dd14090ddb408678c7285b306104e4ab8deebad4c
MD5 a13b62d87d598a9cf0d0cedf3d8e2674
BLAKE2b-256 14e3c6af73076f0544ee75850cda358fd7362081d62f27ecb3797f0b9b7deff3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page