Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230205.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230205-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230205.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230205.tar.gz
Algorithm Hash digest
SHA256 e1aebbe14968f213877e11c5a8758e83cbb1209e076eb00da3118d155237b85f
MD5 dc342994514ea98e85dd8f3caedec380
BLAKE2b-256 90c9ea1c7cdb92a7e6ccbef78964ccef0f88f0267e91451fdf873a0c1035741e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230205-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230205-py3-none-any.whl
Algorithm Hash digest
SHA256 3700e4311d4c02e3f2744dd65f37fa5371c83a1a1b2b242ad351b127fe0a8152
MD5 c7ddddb119f0ee437ffc7931920b6584
BLAKE2b-256 019a8a7276693cbe2314b29dce502c7c367748d8398d66c2cc30eae456d9159f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page