Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230206.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230206-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230206.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230206.tar.gz
Algorithm Hash digest
SHA256 309bcd7629a54a2c9aba2f674d2488dc1f27ad85cde2d5f4d34d2eebd280db6f
MD5 a40a4f23af586b5c9b52ff50412f38a9
BLAKE2b-256 7d49a36d849601aa250f3b35aee0a951505c67625b4297f673db69c863acd5d2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230206-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230206-py3-none-any.whl
Algorithm Hash digest
SHA256 f489b5efdb1f2d9b2e950a4ccea6615d555ca55d473d3eb544a3098aef7219de
MD5 2bcb38ae2c26362c7004e1e4e3f6820b
BLAKE2b-256 8ab13b1fee1eca93b20de50ca829aa086cdd487e0ad7966dac6f758da119e3bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page