Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230207.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230207-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230207.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230207.tar.gz
Algorithm Hash digest
SHA256 63c4d0b8bfd567ec59bf8ec08e58905bfc727117d514d2444cd0aa4aa0b3e063
MD5 d40e59e6b97b8983430e8f8a850b28c2
BLAKE2b-256 228083c08cf38e9ca1e68b5d58a30a49246d22ed2427cd5efd1b380a1a3e7e95

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230207-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230207-py3-none-any.whl
Algorithm Hash digest
SHA256 be985259d4f9b3e3beb27e834c1ad0df23a3f036a5d21d2e1fbe0727035190aa
MD5 51d74fa0e10afce12cbed0c09567dece
BLAKE2b-256 9a06fc1e0dd93c573dedce9106e9f55a3204bd9be4b03d4f37c9e50b05ea051d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page