Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230208.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230208-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230208.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230208.tar.gz
Algorithm Hash digest
SHA256 41257a4837c2ed9978dd987d26592f0a1f5c4df6c4cf6b0f1734434661f2f356
MD5 6fc81a7a41933968562ae7e7b7f13d29
BLAKE2b-256 53c143488558e4bab4d5c28c512cc975c612ec4ccb773d407490179b55970c00

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230208-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230208-py3-none-any.whl
Algorithm Hash digest
SHA256 030cbff5a52cd2001fc843515291ae95a056289f974b3edc82d4cf65f1d9ca95
MD5 60e0553a70e46a0baa25516e3e493d18
BLAKE2b-256 e40f3db873011e10f1df097219dc993352015e558dbdb6eb3aafd79f7867e8d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page