Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230209.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230209-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230209.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230209.tar.gz
Algorithm Hash digest
SHA256 28b4a1ee2b6214061092ab2799aabd15e4444991cc16c41133a3473305632729
MD5 9fdc323a53a1fe5502b6ecef32aa5bf9
BLAKE2b-256 2f0272b3bf8195e34c3468791097c0e1bd75bdba3fa82e4e03cc90bc74adb756

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230209-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230209-py3-none-any.whl
Algorithm Hash digest
SHA256 c2668d4f0a4df7f4d3eb969a2434f2155391adebfc1d0744f38e0830254591b8
MD5 dbdfca16fd27f6c8f3900c8b43f6dd48
BLAKE2b-256 69c533d04ab975c605ec2c1649dd78282a5bd3a4e74a0af6dbdc7cb515e5a09e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page