Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230210.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230210-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230210.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230210.tar.gz
Algorithm Hash digest
SHA256 231496b123c15fd1c723b9222cb84edb35ff23520f219692afe2c7fee39465d0
MD5 834665b14e54c62f2724042d2b783566
BLAKE2b-256 66d817462a101e4e8a958a44c9b62af9e81b7494d882ff3928bf2978bfad1025

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230210-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230210-py3-none-any.whl
Algorithm Hash digest
SHA256 4488b43adf4529f12d8b35968429f53f85fb1973e220b70639eb7d84cc326eb0
MD5 dd0df0c809f036289f4dcd1304ee75b6
BLAKE2b-256 e3d97f0b3ee5cea836d8b72b49c8efcd307100c8c5a15da0105845b62b57719e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page