Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230211.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230211-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230211.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230211.tar.gz
Algorithm Hash digest
SHA256 4898bf6d5588a1da31bc2a0c42aa7ab29e01a64db03c36592127163c475e26e4
MD5 66317aa507ee9adad97d7c130334e221
BLAKE2b-256 a4c64de80c24a89293a6f1c2cd4d2bbecb0d37a08cc9caef98508b95973e2342

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230211-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230211-py3-none-any.whl
Algorithm Hash digest
SHA256 d7a087d55ea9410e03f9ef984a5ec98abecaae7afb1b2030dbef63eee675c1d5
MD5 63980e81a5fb837437d17e6ebd2ce3ca
BLAKE2b-256 cce7fa515dbcb4c86db8b05b51e0c548e41a7e908fa5b67a8802fef412ccc72b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page