Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230212.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230212-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230212.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230212.tar.gz
Algorithm Hash digest
SHA256 b0197aa572bf7ca75d87e5ec7e39a41587bef96f9d33f56d1652cda3b8ebe2b7
MD5 9b8146a6e3e44b459d7855f43e45f1e7
BLAKE2b-256 049d14b4db58becd3e407083f7945120cebfdfaf93e84d2ebd56a69b1282c326

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230212-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230212-py3-none-any.whl
Algorithm Hash digest
SHA256 206c5b63dffcd1402581c2c417c4f796d64e8b01e0d037f29250b363efbaea0b
MD5 63d112ad787fbcd9b01b198f27b712bf
BLAKE2b-256 5c9b64bdc3d809460bf99d130618aa0d0d709a495d4f76fdf244d4bd553b3fdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page