Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230213.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230213-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230213.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230213.tar.gz
Algorithm Hash digest
SHA256 dd4e1d04a6e148141a527dcd87de299dcc426781f91c56dc0fcefcd7eb374df9
MD5 feb7cb1004ce14b4acd903e464d1a6b7
BLAKE2b-256 fdd8b0862daf300e59e6c30eb0844eb7dcb21c9282a7b4143ff5f322d3d8d9b2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230213-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230213-py3-none-any.whl
Algorithm Hash digest
SHA256 88028f5c6822ceb41fc341e82e9a0fe6b4b4b0fcd55b79c11e5cbb8ec15f780c
MD5 d133c2b64caed5e9386d19aaffc7dcf1
BLAKE2b-256 a52d6bd607ab0200f99f81196b1504cbbef44b750b5b11b83e8d0ddbe33b6763

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page