Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230214.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230214-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230214.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230214.tar.gz
Algorithm Hash digest
SHA256 92e176dd388d28ca848407b43204999f11f898648c6ec43baea5f6ea9f4e977d
MD5 73d2a3260ebab7b3aaa614d302902b49
BLAKE2b-256 233641947eb329fa8e268e6bfbc8ec269b830af3c635c26c1ac516fd19c9e64e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230214-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230214-py3-none-any.whl
Algorithm Hash digest
SHA256 9556a561a5139d423f3cc4b41159c595f3a18023e089dda8eb5621ffdddc3205
MD5 d9239ee8c4504fec3c205c8a0bf7c9da
BLAKE2b-256 5a28cccc8d68dc9add6191538ea21ba788545d7b1de35fa8d0535eb2719196d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page