Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230215.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230215-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230215.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230215.tar.gz
Algorithm Hash digest
SHA256 7a162a36f9f018962f50af62a8eceaec5059f8bfc03fadeeb82c560b569e4c96
MD5 d7dacc7620ff233f3aa0af8a13e01835
BLAKE2b-256 55bf81392662669ff23294e5af2ee121ea8e7a9d641711b33d6f3878bea188b7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230215-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230215-py3-none-any.whl
Algorithm Hash digest
SHA256 63b44d987a706a718af276ba406c38c045aa51d7321633f021e5328daed9dc14
MD5 dd9de5d18c6105cf1c37d6ccefebf387
BLAKE2b-256 89673b02588c495f4bc37b25312c104bf71a14b06503ee9ae622e12aa58d0f2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page