Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230216.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230216-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230216.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230216.tar.gz
Algorithm Hash digest
SHA256 31969033517d99e6d49787c13e041d0407e52ff11ab8f0020d9320c765d10839
MD5 2c7699c643dd308829462e1e8f15509f
BLAKE2b-256 f7134036e28a7cf1726c9aac12b04edb07ac9417c81802a34adcd99628147946

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230216-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230216-py3-none-any.whl
Algorithm Hash digest
SHA256 64f27bb68f909727d480c8abb5a1d548e11364f5521a07de1d09296ffcdf4deb
MD5 46ac9de0ebdcebba9fdb692b74a4131f
BLAKE2b-256 ce5c3c3f5110f444b728150a8c385289acd4694744a75a3bab2ca6721a08816e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page