Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230217.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230217-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230217.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230217.tar.gz
Algorithm Hash digest
SHA256 4753e11bbfd282bae4ee9d783eefbec194c23eb888b72f0ce000c4601b8a575f
MD5 221c97bcf8b8107189acba0c3eb09969
BLAKE2b-256 fcc3dcd10f26b584c109d73da9e147dd77adb0e683b76cbbdee4ebdb2e3b5d4a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230217-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230217-py3-none-any.whl
Algorithm Hash digest
SHA256 76bd4ac15540d7df4811d21757f2476d0f27b3c9996962c2672f3b450d771c68
MD5 174673df9154b25d3fbbfb6b96428d6d
BLAKE2b-256 936985a60d80a6cd677715b04f7db53194e02b306a329d34bb4e089ebb1838b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page