Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230218.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230218-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230218.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230218.tar.gz
Algorithm Hash digest
SHA256 469ab40be77d3fad4cb2053cb4a91f78105675f35d673406a31cf3613c982efd
MD5 5e054af6e0b84efc8e586f715b8a2993
BLAKE2b-256 18c3a37c2913ca1c4d211e240981ec4a472ed8a33811f83587ad8af228747ba6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230218-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230218-py3-none-any.whl
Algorithm Hash digest
SHA256 64b5a6a05eeefc1885a69b88dd5dddace32570abb435c128cb5faf31b3d220ee
MD5 e8ebfbf2360cabccbce2291c675013e2
BLAKE2b-256 e6327dc5c0e2bab1c99bb030333e1491be27ce4c50610d41319f40bfdded88b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page