Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install --pre autogluon.cloud  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.1.1b20230219.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.1.1b20230219-py3-none-any.whl (45.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.1.1b20230219.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230219.tar.gz
Algorithm Hash digest
SHA256 ea9815774750a5e3e3f1a7a8fce1e9ae53f57238365ef1195bdb25fdc25d6575
MD5 c78be2c3360c89b659721a680ee9cf66
BLAKE2b-256 551e3ea436c962d9e774a76ae23bb54ae191fad198320c3ce6638f0db5deb2ca

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.1.1b20230219-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.1.1b20230219-py3-none-any.whl
Algorithm Hash digest
SHA256 cf2f251e3f79faa9376ded691cf1420ea2e3067b7ca3905957a216cbecd60e0f
MD5 890d676376a980b0b3ee39295bcece54
BLAKE2b-256 35d7d28a7d3194c5d8745eadfd37a49fe87fdb3a3d0a3d45189ef36c47cc4662

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page